Sistemas de negociação bt


BT Unified Trading.
Unificando comunicações do comerciante.
A BT projeta, produz e instala produtos de voz para traders há mais de 35 anos. A comunicação por voz continua a ser um elemento crítico do fluxo de trabalho comercial, mesmo quando a execução real dos negócios se torna cada vez mais informatizada.
Mas como as pessoas se comunicam e a tecnologia que as suporta está mudando. Comunicações unificadas e soluções de software estão ganhando popularidade e importância na mesa de operações. Os traders estão se tornando mais fluidos em como trabalham, buscando usar uma variedade de ferramentas de comunicação para realizar negócios e ter uma experiência mais perfeita alternando entre eles. Mas as empresas também precisam equilibrar essas novidades para se comunicar com as exigências de conformidade regulamentar cada vez mais exigentes e estão buscando usar soluções pró-ativas de vigilância para melhorar a visão e os controles. E, como todas as indústrias, as empresas precisam reduzir custos e complexidade; os grupos de tecnologia e operações buscam custo otimizado de propriedade, opções de implantação flexíveis baseadas em nuvem e agilidade operacional; eles querem ser capazes de integrar seus sistemas empresariais com o comércio de TI e combinar nuvem com soluções no local da maneira que melhor lhes convier.
O portfólio de Unified Trading da BT ajuda os clientes a atender esse cenário de mudanças e consiste em dois recursos principais do produto:
O produto de IP Trade recentemente adquirido da BT é fundamental para permitir que nossos clientes colaborem de forma mais eficaz em comunidades comerciais complexas e globais; cumprir obrigações de conformidade regulamentar cada vez mais exigentes e reduzir custos e complexidade.
A BT também reconhece que alguns segmentos específicos do mercado de torres preferem escolher a capacidade específica de plataformas TDM dedicadas versus a abordagem mais flexível e aberta de plataformas baseadas em SIP e a BT está comprometida em continuar a oferecer aos clientes essa escolha dentro de nosso portfólio ITS.

A BT projeta, produz e instala o portfólio ITS de produtos de voz comercializadora há mais de 35 anos. O mercado de voz profissional agora está migrando para a próxima geração de soluções baseadas em software e nuvem, mas à medida que essa tecnologia está evoluindo rapidamente, muitos clientes buscam segurança de que podem continuar confiando em seus sistemas ITS no futuro previsível. A BT também reconhece que alguns segmentos específicos do mercado de torre preferem escolher a capacidade específica de plataformas TDM dedicadas versus a abordagem mais flexível e aberta de plataformas baseadas em SIP, e a BT está comprometida em continuar a oferecer aos clientes essa escolha. Como consequência, a BT adotou a abordagem exclusiva de garantir que o portfólio de ITS esteja disponível e seja suportado nos próximos anos.
Características principais.
Faça seus comerciantes mais rápidos e eficientes.
O Núcleo de Plataforma BT ITS fornece a base de que você precisa para seus requisitos atuais e futuros de negociação de voz. O sistema inclui:
Plataforma Principal e Gateways: Suporta distribuição de voz e conferência entre a rede, centrais telefônicas privadas (PBX), torres e outros sistemas de voz. A plataforma principal pode:
Fornecer um número de módulos totalmente digitais, configuráveis ​​para atender às necessidades de qualquer pregão. Forneça uma variedade de opções de plataforma, desde chassis únicos que suportam crescimento modular até sistemas de campus centralizados e altamente resilientes que distribuem um único sistema em vários locais. Entregue até 27 canais de voz e mensagens simultaneamente a todas as mesas. Suporta as configurações de multiplexação por divisão de tempo (TDM) e Internet Protocol (IP). Ofereça os gateways que fazem a interface entre os componentes principais e os fluxos de comunicação e suporte os protocolos analógicos e digitais tradicionais.
BT ITS Recorder: Fornece um sistema de gravação de voz confiável & ndash; uma ferramenta crítica no mercado altamente regulado de hoje & ndash; que pode:
Capture, indexe e recupere as interações do chamador nos ambientes front-office e back-office. Grave até 380 canais TDM ou IP e permita que você pesquise e repita conversas facilmente gravadas em toda a empresa. Suporte aos sistemas ITS, Avaya, Cisco e Nortel. Disponível como um serviço totalmente integrado ou como uma versão reduzida para sistemas menores.
Hoot and Holler: Permite que os usuários escutem e contribuam para uma ligação de áudio contínua. Pode:
Suporta até 99 buzinas diferentes, que podem ser entregues a mais de 500 usuários de alto-falante. Permitir que os usuários contribuam para a chamada simplesmente pressionando o & ldquo; talk & rdquo; botão & ndash; até oito usuários podem conversar simultaneamente.
BT ITS Intercom / Enterprise Intercom: Utiliza a funcionalidade de intercomunicador da torre Netrix para:
Ative os traders para colegas de intercomunicação na mesma plataforma principal. Unificar as comunicações de intercomunicação entre comerciantes e contrapartes externas conectando diferentes Plataformas Principais e sistemas de intercomunicação de terceiros.
Descrição detalhada.
Configure o sistema que você deseja.
O BT ITS Platform Core inclui comutadores de voz, bem como servidores de mídia para intercomunicação, assovios, comunicação de vídeo e gravação de voz.
Nossa gama de comutadores centrais significa que você pode selecionar o modelo mais apropriado para o tamanho e a escala de suas operações. Escolha entre:
Chassi modular único p31: uma plataforma que pode caber em um gabinete de 19 polegadas ou pode ser montada em um gabinete de montagem no chão ou na parede fornecido pela BT. O chassi:
Suporta duas placas de estação que, por sua vez, suportam 16 torres. Facilita o crescimento modular, permitindo que você amplie facilmente a capacidade da plataforma conforme necessário. Fornece resiliência adicional quando conectado a outro chassi p31, criando um chassi modular duplo.
Chassi modular duplo p41: uma combinação pré-embalada de dois chassis modulares individuais p31, montados em um gabinete alto de 19 polegadas com espaço para PCs e equipamentos de rede.
Sistema de gabinete único p51: um único gabinete de 19 polegadas que:
Fornece todas as conexões de comutação, conferência e rede de telecomunicações. Inclui uma prateleira Megalink 3, com slots para 12 cartões de estação e dois cartões hot standby, para uma capacidade total de 192 torres. Possui um segundo gabinete para abrigar energia e servidores de PC associados à p51. Permite que duas plataformas p51 sejam combinadas, duplicando efetivamente a capacidade.
Sistema multi-gabinete p107: uma solução de gabinete escalável que:
Incorpora gabinetes separados para rede de telecomunicações e switch / conferência, além de gabinetes adicionais para abrigar sistemas de energia, servidores de PC e equipamentos de rede. Inclui duas prateleiras MegaLink 3, cada uma com slots para 12 cartões de estação e dois cartões hot standby. Permite a ligação de mais sete p107s, tornando a capacidade total de um sistema expandido de 3.072 torres.
Implantações do campus: uma configuração moderna que distribui um único sistema em vários sites e permite que você selecione a melhor implantação para suas necessidades, como o alojamento de equipamentos centrais em cada um de seus sites ou em um data center longe de edifícios de usuários.
Os gateways interagem entre os componentes principais e os fluxos de comunicação externos e:
São aprovados para conexão com redes de telecomunicações locais em mais de 60 países. Suporta linhas privadas analógicas tradicionais, bem como uma gama abrangente de interfaces digitais.
O BT ITS Recorder é um conjunto de aplicativos de software que:
Registre conversas mantidas em linhas de multiplexação de divisão de tempo (TDM) e Internet Protocol (IP). Forneça uma interface da Web intuitiva que permita reproduzir conversas do armazenamento local ou arquivado. Ofereça um recurso de pesquisa rápido e fácil que usa filtragem abrangente de chamadas.
BT ITS Intercom / Enterprise Intercom.
As torres BT Netrix possuem um recurso interno de intercomunicação que:
Permite que os usuários intercomunem colegas internos. Fornece contato de intercomunicação com partes externas que estão usando diferentes plataformas ITS e sistemas de torre. Suporta até 254 grupos de intercomunicação pré-configurados.
Hoots são formas tradicionais de comunicação que permitem aos usuários ouvir e contribuir para uma chamada de áudio em execução contínua à vontade. Ele pode ser hospedado em placas de linha analógicas ou digitais e, para cada piada, um circuito externo é incluído na conferência.
Especificações técnicas.
Especificações que inspiram confiança.
Os gateways ITS são as interfaces entre os componentes principais do ITS e os fluxos de comunicações externos (fios analógicos tradicionais, E1 / T1, QSIG, ISDN e SIP).
O ITS é aprovado para conexão com redes de telecomunicações locais em mais de 60 países. Além de um conjunto completo de interfaces analógicas, o ITS suporta uma ampla gama de protocolos digitais para redes de PBX e de telecomunicações.
Nossas interfaces analógicas suportadas se dividem em dois grupos:
Loop out - Gen in, PSTN - Discagem MF (também usada para portas PABX analógicas) Loop out - Gen in, PSTN, discagem por desconexão de loops Loop out - Gen in, PSTN - Fio Privado (manual e auto ring down) Gen in - Gen out, manual e auto ring down Loop in - Gen out, manual e auto ring down.
O Módulo de Rede Analógica ITS é composto por: Cartão de Conversão Analógico (ACC), cartão PSTN de 16 portas, cartão Gen-gen de 16 portas, revestimento de conversão Gen-Loop de 8 portas para cartão Gen-Gen. Pares de circuitos no cartão Gen-Gen podem opcionalmente ser configurados como FWIC. Esses cartões são compatíveis apenas com o chassi modular p31 e as prateleiras analógicas híbridas de rede digital nas p51 e p107.
O módulo de rede digital ITS suporta a codificação tanto de U-Law como de A-Law a 1,5Mb / s (T1) e 2Mb / s (E1).
O ITS suporta os seguintes protocolos de sinalização sobre o E1:
E1 CAS EDSS1 (EuroISDN - com muitas variantes internacionais) QSIG Rede Meridian de 30 canais definida pelo cliente - MCDN30 DPNSS.
O ITS suporta os seguintes protocolos de sinalização sobre T1:
T1 CAS QSIG Rede Meridian Definida pelo Cliente de 23 Canais - MCDN23 INSNet 1500 (Japão) IDA-P (Hong Kong) NI1, NI2 (EUA)
O ITS atualmente suporta os protocolos QSIG e DPNSS para uma variedade de PBXs, incluindo os da Cisco, Nortel, Avaya, Ericsson e Siemens. Ele também suporta o protocolo MCDN proprietário da Nortel.
O módulo de rede digital é composto por uma placa, a DLIC4. A placa DLIC4 é compatível apenas com o chassi Modular p31 e as prateleiras híbridas de rede analógico-digital nas p51 e p107.
Quem deveria comprar?
Uma plataforma para atender a requisitos específicos.
A plataforma BT ITS é projetada especificamente para as demandas do setor de negociação financeira.
Disponibilidade.
Disponível em todo o mundo.
A plataforma BT ITS está disponível em todo o mundo.
Entre em contato com seu Gerente de Conta BT ou informe-se agora para saber mais sobre como a Plataforma BT ITS pode revolucionar suas comunicações comerciais.
Conteúdo conectado.
Estudos de caso.
Totan IT: comunicação de primeira classe faz corretores confiantes.
A Totan conta com a BT Netrix e a infraestrutura de suporte fornecida pela BT Unified Trading no estado de arte da sede de Tóquio.
Ajudando a manter a Bolsa de Valores de Nova York na vanguarda da tecnologia de negociação.
A BT torna o digital possível para a Bolsa de Valores de Nova York.
Indústrias.
Mercados financeiros.
Apoiar todas as etapas do processo de negociação em todas as classes de ativos, desde dados de mercado de pré-negociação até compensação e liquidação pós-negociação.
BT Unified Trading.
BT Unified Trading - permitindo comunicação, colaboração e conformidade de missão crítica.
A BT conclui a aquisição da IP Trade.
Aquisição para melhorar os clientes da BT & # x2019; capacidade de unificar comunicações de sala de negociação e controle.
Os clientes de serviços financeiros da BT agora podem acessar a plataforma de gerenciamento de risco interno de última geração da RedOwl.
A plataforma de análise da RedOwl agora está disponível via BT, ajudando os clientes de serviços financeiros a descobrir ameaças de insider, além de atender aos requisitos de conformidade para vigilância regulatória.
Descubra por que o BT foi eleito melhor provedor de rede em serviços financeiros.
A BT Radianz Cloud ocupa o primeiro lugar no ranking de 2016 da Waters Technology.
O Michael Cooper, da BT & # x2019; é classificado entre os melhores visionários tecnológicos do mundo!
A principal publicação de mercados financeiros globais, Institutional Investor, voltou a denominar o Michael Cooper da BT em seus rankings Tech50.
A BT ajuda ADS Securities a expandir as operações de negociação institucional para a América do Norte.
A principal empresa de investimentos em corretagem e câmbio de Abu Dhabi usa a BT Radianz Services para oferecer acesso aos mercados financeiros de Nova York.
A BT ajuda o setor financeiro global a manter os dados seguros com o novo serviço de hacking ético.
A BT traz testes de segurança certificados pela CREST STAR para proteger organizações financeiras de ameaças cibernéticas.
A BT recebe prêmios da Waters Sell-Side Technology por sua nuvem de serviços financeiros.
Descubra por que a BT foi recentemente julgada como a fornecedora Best Cloud Provider e Best Trading Network para o lado de venda de serviços financeiros.
Nosso newsletter Re: fontes de mercados financeiros.
Pontos de vista e notícias para os mercados financeiros.
BT Ponto de vista.
Conformidade: Desbloquear os dados importantes.
Conformidade efetiva e vigilância pró-ativa nos mercados financeiros.

Arquitetura de pregão.
Idiomas disponíveis.
Opções de download.
Ver com o Adobe Reader em uma variedade de dispositivos.
Índice.
Arquitetura de pregão.
Visão geral executiva.
Maior concorrência, maior volume de dados de mercado e novas demandas regulatórias são algumas das forças motrizes por trás das mudanças na indústria. As empresas estão tentando manter sua vantagem competitiva mudando constantemente suas estratégias de negociação e aumentando a velocidade de negociação.
Uma arquitetura viável precisa incluir as tecnologias mais recentes dos domínios de rede e de aplicativo. Tem que ser modular para fornecer um caminho gerenciável para evoluir cada componente com o mínimo de interrupção no sistema geral. Portanto, a arquitetura proposta por este artigo é baseada em uma estrutura de serviços. Examinamos serviços como mensagens de baixíssima latência, monitoramento de latência, multicast, computação, armazenamento, virtualização de dados e aplicativos, resiliência comercial, mobilidade comercial e thin client.
A solução para os complexos requisitos da plataforma de negociação da próxima geração deve ser construída com uma mentalidade holística, cruzando as fronteiras de silos tradicionais como negócios e tecnologia ou aplicativos e redes.
O principal objetivo deste documento é fornecer diretrizes para a criação de uma plataforma de negociação de baixíssima latência e, ao mesmo tempo, otimizar o rendimento bruto e a taxa de mensagens para dados de mercado e ordens de negociação FIX.
Para conseguir isso, estamos propondo as seguintes tecnologias de redução de latência:
• Interconexão de alta velocidade - conectividade InfiniBand ou 10 Gbps para o cluster de negociação.
• Barramento de mensagens de alta velocidade.
• Aceleração de aplicativos via RDMA sem re-código do aplicativo.
• Monitoramento de latência em tempo real e redirecionamento do tráfego de negociação para o caminho com latência mínima.
Tendências e Desafios da Indústria.
As arquiteturas comerciais da próxima geração precisam responder às crescentes demandas por velocidade, volume e eficiência. Por exemplo, espera-se que o volume de dados do mercado de opções dobre após a introdução do trading centavo em 2007. Existem também exigências regulatórias para a melhor execução, que exigem o manuseio de atualizações de preços a taxas que se aproximam de 1 milhão de msg / seg. para trocas. Eles também exigem visibilidade do frescor dos dados e prova de que o cliente obteve a melhor execução possível.
No curto prazo, a velocidade de negociação e inovação são os principais diferenciais. Um número crescente de negociações é tratado por aplicativos de comércio algorítmico colocados o mais próximo possível do local de execução da negociação. Um desafio com estes "black-box" mecanismos de negociação é que eles compõem o aumento de volume emitindo ordens apenas para cancelá-los e reenviá-los. A causa desse comportamento é a falta de visibilidade sobre qual local oferece a melhor execução. O comerciante humano é agora um "engenheiro financeiro" um "quant" (analista quantitativo) com habilidades de programação, que podem ajustar os modelos de negociação em tempo real. As empresas desenvolvem novos instrumentos financeiros, como derivativos climáticos ou negociações entre classes de ativos, e precisam implantar os novos aplicativos rapidamente e de forma escalável.
No longo prazo, a diferenciação competitiva deve vir da análise, não apenas do conhecimento. Os principais traders do futuro assumem riscos, obtêm uma visão verdadeira do cliente e batem consistentemente no mercado (fonte IBM: www-935.ibm/services/us/imc/pdf/ge510-6270-trader. pdf).
A resiliência dos negócios tem sido uma das principais preocupações das empresas de trading desde 11 de setembro de 2001. As soluções nesta área variam desde datacenters redundantes situados em diferentes geografias e conectados a múltiplos locais de negociação até soluções de trader virtual oferecendo aos operadores de mercado a maior parte da funcionalidade de uma mesa de negociação em um local remoto.
O setor de serviços financeiros é um dos mais exigentes em termos de requisitos de TI. O setor está passando por uma mudança arquitetônica em direção à Arquitetura Orientada a Serviços (SOA), serviços da Web e virtualização de recursos de TI. A SOA aproveita o aumento da velocidade da rede para permitir a vinculação dinâmica e a virtualização de componentes de software. Isso permite a criação de novos aplicativos sem perder o investimento em sistemas e infraestrutura existentes. O conceito tem o potencial de revolucionar a forma como a integração é feita, permitindo reduções significativas na complexidade e no custo de tal integração (gigaspaces / download / MerrilLynchGigaSpacesWP. pdf).
Outra tendência é a consolidação de servidores em farms de servidores de data center, enquanto as mesas de operação possuem apenas extensões KVM e clientes ultra-thin (por exemplo, SunRay e HP blade solutions). As redes de área metropolitana de alta velocidade permitem que os dados de mercado sejam multicast entre locais diferentes, permitindo a virtualização do pregão.
Arquitetura de alto nível.
A Figura 1 descreve a arquitetura de alto nível de um ambiente comercial. A planta ticker e os mecanismos de negociação algorítmica estão localizados no cluster de negociação de alto desempenho no data center da empresa ou na bolsa. Os comerciantes humanos estão localizados na área de aplicativos do usuário final.
Funcionalmente, há dois componentes de aplicativos no ambiente comercial corporativo, editores e assinantes. O barramento de mensagens fornece o caminho de comunicação entre editores e assinantes.
Existem dois tipos de tráfego específicos para um ambiente de negociação:
• Dados de mercado - carrega informações sobre preços para instrumentos financeiros, notícias e outras informações de valor agregado, como análises. É unidirecional e muito sensível à latência, normalmente entregue em multicast UDP. É medido em atualizações / seg. e em Mbps. Os dados de mercado fluem de um ou vários feeds externos, provenientes de provedores de dados de mercado, como bolsas de valores, agregadores de dados e ECNs. Cada provedor tem seu próprio formato de dados de mercado. Os dados são recebidos por manipuladores de feeds, aplicativos especializados que normalizam e limpam os dados e os enviam aos consumidores de dados, como mecanismos de preços, aplicativos de comércio algorítmico ou comerciantes humanos. As empresas do lado da venda também enviam os dados do mercado para seus clientes, empresas compradoras, como fundos mútuos, fundos de hedge e outros gerentes de ativos. Algumas empresas de buy-side podem optar por receber feeds diretos das trocas, reduzindo a latência.
Figura 1 Arquitetura de negociação para uma empresa do lado de compra / venda.
Não existe um padrão da indústria para formatos de dados de mercado. Cada troca tem seu formato proprietário. Provedores de conteúdo financeiro, como Reuters e Bloomberg, agregam diferentes fontes de dados de mercado, normalizam e adicionam notícias ou análises. Exemplos de feeds consolidados são RDF (Reuters Data Feed), RWF (Reuters Wire Format) e Bloomberg Professional Services Data.
Para fornecer dados de mercado de latência mais baixa, os dois fornecedores lançaram feeds de dados de mercado em tempo real que são menos processados ​​e têm menos análises:
- Bloomberg B-Pipe - Com o B-Pipe, a Bloomberg separa seu feed de dados de mercado de sua plataforma de distribuição porque um terminal Bloomberg não é necessário para obter o B-Pipe. Wombat e Reuters Feed Handlers anunciaram o apoio ao B-Pipe.
Uma empresa pode decidir receber feeds diretamente de uma troca para reduzir a latência. Os ganhos na velocidade de transmissão podem variar entre 150 milissegundos e 500 milissegundos. Esses feeds são mais complexos e mais caros e a empresa precisa construir e manter sua própria fábrica de tickers (financetech / featured / showArticle. jhtml? ArticleID = 60404306).
• Ordens de negociação - esse tipo de tráfego transporta as negociações reais. É bidirecional e muito sensível à latência. É medido em mensagens / seg. e Mbps. Os pedidos são originários de uma empresa de buy side ou sell side e são enviados para plataformas de negociação como uma Exchange ou ECN para execução. O formato mais comum para o transporte de pedidos é o FIX (Financial Information eXchange - fixprotocol /). Os aplicativos que manipulam mensagens FIX são chamados de mecanismos FIX e interagem com sistemas de gerenciamento de pedidos (OMS).
Uma otimização para o FIX é chamada de FAST (correção adaptada para streaming), que usa um esquema de compactação para reduzir o tamanho da mensagem e, com efeito, reduzir a latência. O FAST é voltado mais para a entrega de dados de mercado e tem o potencial de se tornar um padrão. O FAST também pode ser usado como um esquema de compactação para formatos de dados de mercado proprietários.
Para reduzir a latência, as empresas podem optar por estabelecer o acesso direto ao mercado (Direct Market Access - DMA).
DMA é o processo automatizado de roteamento de uma ordem de títulos diretamente para um local de execução, evitando assim a intervenção de terceiros (towergroup / research / content / glossary. jsp? Page = 1 & glossaryId = 383). O DMA requer uma conexão direta com o local de execução.
O barramento de mensagens é um software de middleware de fornecedores como a Tibco, a 29West, a Reuters RMDS ou uma plataforma de código aberto, como o AMQP. O barramento de mensagens usa um mecanismo confiável para entregar mensagens. O transporte pode ser feito via TCP / IP (TibcoEMS, 29West, RMDS e AMQP) ou UDP / multicast (TibcoRV, 29West e RMDS). Um conceito importante na distribuição de mensagens é o & quot; stream de tópico & quot; que é um subconjunto de dados de mercado definidos por critérios como símbolo de ticker, setor ou uma determinada cesta de instrumentos financeiros. Os inscritos participam de grupos de tópicos mapeados em um ou vários subtópicos para receber apenas as informações relevantes. No passado, todos os comerciantes recebiam todos os dados do mercado. Nos volumes atuais de tráfego, isso seria sub-ótimo.
A rede desempenha um papel crítico no ambiente de negociação. Os dados de mercado são transportados para o pregão onde os comerciantes humanos estão localizados através de uma rede de alta velocidade Campus ou Metro Area. Alta disponibilidade e baixa latência, bem como alta taxa de transferência, são as métricas mais importantes.
O ambiente comercial de alto desempenho possui a maioria de seus componentes no farm de servidores do Data Center. Para minimizar a latência, os mecanismos de negociação algorítmica precisam estar localizados nas proximidades dos manipuladores de feeds, mecanismos FIX e sistemas de gerenciamento de pedidos. Um modelo de implantação alternativo tem os sistemas de negociação algorítmica localizados em uma troca ou um provedor de serviços com conectividade rápida para várias trocas.
Modelos de implantação.
Existem dois modelos de implantação para uma plataforma de negociação de alto desempenho. As empresas podem optar por ter uma mistura dos dois:
• Data Center da empresa de trading (Figura 2) - Este é o modelo tradicional, onde uma plataforma de negociação completa é desenvolvida e mantida pela empresa com links de comunicação para todas as plataformas de negociação. A latência varia com a velocidade dos links e o número de saltos entre a empresa e os locais.
Figura 2 Modelo de Implantação Tradicional.
• Co-location na plataforma de negociação (bolsas, prestadores de serviços financeiros (FSP)) (Figura 3)
A empresa comercial implanta sua plataforma de negociação automatizada o mais próximo possível dos locais de execução para minimizar a latência.
Figura 3 Modelo de Implantação Hospedada.
Arquitetura de Negociação Orientada a Serviços.
Estamos propondo uma estrutura orientada a serviços para a construção da arquitetura comercial de próxima geração. Essa abordagem fornece uma estrutura conceitual e um caminho de implementação com base na modularização e minimização de interdependências.
Essa estrutura fornece às empresas uma metodologia para:
• Avalie seu estado atual em termos de serviços.
• Priorizar serviços com base em seu valor para o negócio.
• Evolua a plataforma de negociação para o estado desejado usando uma abordagem modular.
A arquitetura de negociação de alto desempenho conta com os seguintes serviços, conforme definido pela estrutura de arquitetura de serviços representada na Figura 4.
Figura 4 Estrutura de Arquitetura de Serviço para Negociação de Alto Desempenho.
Tabela 1 Descrições e Tecnologias de Serviço.
Mensagens de latência ultra baixa.
Instrumentação - appliances, agentes de software e módulos roteadores.
Virtualização de SO e E / S, RDMA (Remote Direct Memory Access), TOE (TCP Offload Engines)
Middleware que paraleliza o processamento de aplicativos.
Middleware que acelera o acesso a dados para aplicativos, por exemplo, armazenamento em cache na memória.
Replicação multicast assistida por hardware através da rede; otimizações multicast Camada 2 e Camada 3.
Virtualização de hardware de armazenamento (VSANs), replicação de dados, backup remoto e virtualização de arquivos.
Resiliência comercial e mobilidade.
Balanceamento de carga local e local e redes de campus de alta disponibilidade.
Serviços de aplicativos de área ampla.
Aceleração de aplicativos em uma conexão WAN para comerciantes residindo fora do campus.
Serviço de cliente fino.
Desacoplamento dos recursos de computação dos terminais voltados para o usuário final.
Serviço de Mensagens de Latência Ultra-Baixa.
Esse serviço é fornecido pelo barramento de mensagens, que é um sistema de software que resolve o problema de conectar muitos-para-muitos aplicativos. O sistema consiste em:
• Um conjunto de esquemas de mensagens predefinidos.
• Um conjunto de mensagens de comando comuns.
• Uma infraestrutura de aplicativos compartilhados para enviar as mensagens para os destinatários. A infraestrutura compartilhada pode ser baseada em um intermediário de mensagem ou em um modelo de publicação / assinatura.
Os principais requisitos para o barramento de mensagens da próxima geração são (fonte 29West):
• menor latência possível (por exemplo, menos de 100 microssegundos)
• Estabilidade sob carga pesada (por exemplo, mais de 1,4 milhões de msg / segundo)
• Controle e flexibilidade (controle de taxa e transporte configurável)
Há esforços no setor para padronizar o barramento de mensagens. O AMQP (Advanced Message Queuing Protocol) é um exemplo de um padrão aberto promovido pelo J. P. Morgan Chase e apoiado por um grupo de fornecedores como Cisco, Envoy Technologies, Red Hat, TWIST Process Innovations, Iona, 29West e iMatix. Dois dos principais objetivos são fornecer um caminho mais simples para a interoperabilidade de aplicativos escritos em plataformas diferentes e modularidade para que o middleware possa ser facilmente desenvolvido.
Em termos muito gerais, um servidor AMQP é análogo a um servidor de E-mail, com cada troca agindo como um agente de transferência de mensagens e cada fila de mensagens como uma caixa de correio. As ligações definem as tabelas de roteamento em cada agente de transferência. Os editores enviam mensagens para agentes de transferência individuais, que encaminham as mensagens para caixas de correio. Os consumidores recebem mensagens de caixas de correio, o que cria um modelo poderoso e flexível que é simples (fonte: amqp / tikiwiki / tiki-index. php? Page = OpenApproach # Why_AMQP_).
Serviço de Monitoramento de Latência.
Os principais requisitos para este serviço são:
• Granularidade de medidas de sub-milissegundos.
• Visibilidade em tempo quase real sem adicionar latência ao tráfego de negociação.
• Capacidade de diferenciar a latência do processamento de aplicativos da latência de trânsito da rede.
• Capacidade de lidar com altas taxas de mensagens.
• Fornecer uma interface programática para aplicativos de negociação para receber dados de latência, permitindo que os mecanismos de negociação algorítmica se adaptem às condições em constante mudança.
• Correlacionar eventos de rede com eventos do aplicativo para fins de solução de problemas.
A latência pode ser definida como o intervalo de tempo entre o momento em que uma ordem de negociação é enviada e quando a mesma ordem é reconhecida e aceita pela parte receptora.
Abordar a questão da latência é um problema complexo, exigindo uma abordagem holística que identifique todas as fontes de latência e aplique diferentes tecnologias em diferentes camadas do sistema.
A Figura 5 mostra a variedade de componentes que podem introduzir latência em cada camada da pilha OSI. Ele também mapeia cada fonte de latência com uma possível solução e uma solução de monitoramento. Essa abordagem em camadas pode oferecer às empresas uma maneira mais estruturada de atacar a questão da latência, em que cada componente pode ser considerado como um serviço e tratado de forma consistente em toda a empresa.
A manutenção de uma medida precisa do estado dinâmico desse intervalo de tempo em rotas e destinos alternativos pode ser de grande ajuda nas decisões de negociação tática. A capacidade de identificar a localização exata dos atrasos, seja na rede de borda do cliente, no hub de processamento central ou no nível do aplicativo de transação, determina significativamente a capacidade dos provedores de serviços de cumprir seus contratos de nível de serviço (SLAs). Para os formulários buy-side e sell-side, bem como para os sindicatos de dados de mercado, a rápida identificação e remoção de gargalos traduz-se diretamente em melhores oportunidades e receitas comerciais.
Figura 5 Arquitetura de Gerenciamento de Latência.
Ferramentas de monitoramento de baixa latência da Cisco.
As ferramentas tradicionais de monitoramento de rede operam com minutos ou segundos de granularidade. As plataformas de negociação da próxima geração, especialmente aquelas que suportam negociação algorítmica, exigem latências inferiores a 5 ms e níveis extremamente baixos de perda de pacotes. Em uma LAN Gigabit, uma microburst de 100 ms pode causar 10.000 transações a serem perdidas ou excessivamente atrasadas.
A Cisco oferece aos seus clientes uma variedade de ferramentas para medir a latência em um ambiente de negociação:
• Gerente de Qualidade de Largura de Banda (BQM) (OEM da Corvil)
• Solução de Monitoramento de Latência de Serviços Financeiros (FSMS) baseada em Cisco AON
Gerente de Qualidade de Largura de Banda.
O Bandwidth Quality Manager (BQM) 4.0 é um produto de gerenciamento de desempenho de aplicativos de rede de última geração que permite que os clientes monitorem e provisionem sua rede para níveis controlados de latência e desempenho de perda. Embora o BQM não seja voltado exclusivamente para redes comerciais, sua visibilidade de microssegundos combinada com recursos de provisionamento de largura de banda inteligente o torna ideal para esses ambientes exigentes.
O Cisco BQM 4.0 implementa um amplo conjunto de tecnologias de medição de tráfego e análise de rede patenteadas e com patente pendente que proporcionam ao usuário visibilidade e compreensão sem precedentes de como otimizar a rede para obter o máximo desempenho do aplicativo.
O Cisco BQM agora é suportado na família de produtos do Cisco Application Deployment Engine (ADE). A família de produtos Cisco ADE é a plataforma escolhida para aplicativos de gerenciamento de rede da Cisco.
Benefícios do BQM.
A microvisualização do Cisco BQM é a capacidade de detectar, medir e analisar eventos de tráfego de latência, jitter e perda que induzem a níveis de microssegundos de granularidade com resolução por pacote. Isso permite que o Cisco BQM detecte e determine o impacto de eventos de tráfego na latência, instabilidade e perda da rede. É crítico para os ambientes de negociação que o BQM possa suportar medições de latência, perda e jitter unidirecionais para tráfego TCP e UDP (multicast). Isso significa que ele é relatado perfeitamente para tráfego de tráfego e feeds de dados de mercado.
O BQM permite que o usuário especifique um conjunto abrangente de limites (em relação à atividade de microburst, latência, perda, jitter, utilização, etc.) em todas as interfaces. Em seguida, o BQM opera uma captura de pacote de rolagem em segundo plano. Sempre que ocorre uma violação de limite ou outro evento de degradação de desempenho potencial, ele aciona o Cisco BQM para armazenar a captura de pacote no disco para análise posterior. Isso permite que o usuário examine detalhadamente o tráfego do aplicativo que foi afetado pela degradação do desempenho (& quot; as vítimas & quot;) e o tráfego que causou a degradação do desempenho (& quot; os culpados & quot;). Isso pode reduzir significativamente o tempo gasto no diagnóstico e na solução de problemas de desempenho da rede.
O BQM também é capaz de fornecer recomendações detalhadas de provisionamento de política de largura de banda e qualidade de serviço (QoS), que o usuário pode aplicar diretamente para obter o desempenho de rede desejado.
Medidas de BQM ilustradas.
Para entender a diferença entre algumas das técnicas de medição mais convencionais e a visibilidade fornecida pelo BQM, podemos observar alguns gráficos de comparação. No primeiro conjunto de gráficos (Figura 6 e Figura 7), vemos a diferença entre a latência medida pelo Passive Network Quality Monitor (PNQM) do BQM e a latência medida pela injeção de pacotes de ping a cada 1 segundo no fluxo de tráfego.
Na Figura 6, vemos a latência relatada por pacotes de ping ICMP de 1 segundo para tráfego de rede real (ele é dividido por 2 para fornecer uma estimativa para o atraso unidirecional). Ele mostra o atraso confortavelmente abaixo de cerca de 5ms durante quase todo o tempo.
Figura 6 Latência reportada por pacotes de ping ICMP de 1 segundo para tráfego de rede real.
Na Figura 7, vemos a latência relatada pelo PNQM para o mesmo tráfego ao mesmo tempo. Aqui vemos que medindo a latência unidirecional dos pacotes de aplicativos reais, obtemos uma imagem radicalmente diferente. Aqui, a latência parece estar pairando em torno de 20 ms, com surtos ocasionais muito mais altos. A explicação é que, como o ping está enviando pacotes apenas a cada segundo, está faltando completamente a maior parte da latência de tráfego do aplicativo. Na verdade, os resultados do ping normalmente indicam apenas atraso de propagação de ida e volta em vez de latência de aplicativo realista na rede.
Figura 7 Latência Relatada pelo PNQM para o Real Network Traffic.
No segundo exemplo (Figura 8), vemos a diferença na carga reportada ou níveis de saturação entre uma visualização média de 5 minutos e uma visualização de microburst de 5 ms (o BQM pode reportar a exatidão de cerca de 10-100 nanossegundos em microbursts). A linha verde mostra que a média de utilização nas médias de 5 minutos é baixa, talvez até 5 Mbits / s. O gráfico azul escuro mostra a atividade de microburst de 5ms alcançando entre 75 Mbits / se 100 Mbits / s, a velocidade da LAN efetivamente. O BQM mostra esse nível de granularidade para todas as aplicações e também fornece regras de provisionamento claras para permitir que o usuário controle ou neutralize esses microbursts.
Figura 8 Diferença na carga de link reportada entre uma visualização média de 5 minutos e uma exibição de microssonda de 5 ms.
Implantação de BQM na Rede de Negociação.
A Figura 9 mostra uma implantação típica do BQM em uma rede de negociação.
Figura 9 Implantação típica do BQM em uma rede de negociação.
O BQM pode então ser usado para responder a esses tipos de perguntas:
• Algum dos meus principais links de LAN Gigabit está saturado por mais de X milissegundos? Isso está causando perda? Quais links seriam mais beneficiados com uma atualização para as velocidades Etherchannel ou 10 Gigabit?
• Qual tráfego de aplicativos está causando a saturação dos meus links de 1 Gigabit?
• Algum dos dados de mercado apresenta perda de ponta a ponta?
• Quanta latência adicional o data center de failover enfrenta? Este link é dimensionado corretamente para lidar com microbursts?
• Meus traders estão recebendo atualizações de baixa latência da camada de distribuição de dados de mercado? Eles estão vendo algum atraso maior que X milissegundos?
Ser capaz de responder a essas perguntas de maneira simples e eficaz economiza tempo e dinheiro na execução da rede de negociação.
O BQM é uma ferramenta essencial para ganhar visibilidade em dados de mercado e ambientes de negociação. Ele fornece medições granulares de latência de ponta a ponta em infraestruturas complexas que sofrem movimentação de dados de alto volume. Detectar efetivamente microbursts em níveis sub-milissegundos e receber análise especializada em um determinado evento é inestimável para os arquitetos de pregão. Recomendações de provisionamento de largura de banda inteligente, como dimensionamento e análise de hipóteses, proporcionam maior agilidade para responder às condições voláteis do mercado. As the explosion of algorithmic trading and increasing message rates continues, BQM, combined with its QoS tool, provides the capability of implementing QoS policies that can protect critical trading applications.
Cisco Financial Services Latency Monitoring Solution.
Cisco and Trading Metrics have collaborated on latency monitoring solutions for FIX order flow and market data monitoring. Cisco AON technology is the foundation for a new class of network-embedded products and solutions that help merge intelligent networks with application infrastructure, based on either service-oriented or traditional architectures. Trading Metrics is a leading provider of analytics software for network infrastructure and application latency monitoring purposes (tradingmetrics/).
The Cisco AON Financial Services Latency Monitoring Solution (FSMS) correlated two kinds of events at the point of observation:
• Network events correlated directly with coincident application message handling.
• Trade order flow and matching market update events.
Using time stamps asserted at the point of capture in the network, real-time analysis of these correlated data streams permits precise identification of bottlenecks across the infrastructure while a trade is being executed or market data is being distributed. By monitoring and measuring latency early in the cycle, financial companies can make better decisions about which network service—and which intermediary, market, or counterparty—to select for routing trade orders. Likewise, this knowledge allows more streamlined access to updated market data (stock quotes, economic news, etc.), which is an important basis for initiating, withdrawing from, or pursuing market opportunities.
The components of the solution are:
• AON hardware in three form factors:
– AON Network Module for Cisco 2600/2800/3700/3800 routers.
– AON Blade for the Cisco Catalyst 6500 series.
– AON 8340 Appliance.
• Trading Metrics M&A 2.0 software, which provides the monitoring and alerting application, displays latency graphs on a dashboard, and issues alerts when slowdowns occur (tradingmetrics/TM_brochure. pdf).
Figure 10 AON-Based FIX Latency Monitoring.
Cisco IP SLA.
Cisco IP SLA is an embedded network management tool in Cisco IOS which allows routers and switches to generate synthetic traffic streams which can be measured for latency, jitter, packet loss, and other criteria (cisco/go/ipsla).
Two key concepts are the source of the generated traffic and the target. Both of these run an IP SLA "responder," which has the responsibility to timestamp the control traffic before it is sourced and returned by the target (for a round trip measurement). Various traffic types can be sourced within IP SLA and they are aimed at different metrics and target different services and applications. The UDP jitter operation is used to measure one-way and round-trip delay and report variations. As the traffic is time stamped on both sending and target devices using the responder capability, the round trip delay is characterized as the delta between the two timestamps.
A new feature was introduced in IOS 12.3(14)T, IP SLA Sub Millisecond Reporting, which allows for timestamps to be displayed with a resolution in microseconds, thus providing a level of granularity not previously available. This new feature has now made IP SLA relevant to campus networks where network latency is typically in the range of 300-800 microseconds and the ability to detect trends and spikes (brief trends) based on microsecond granularity counters is a requirement for customers engaged in time-sensitive electronic trading environments.
As a result, IP SLA is now being considered by significant numbers of financial organizations as they are all faced with requirements to:
• Report baseline latency to their users.
• Trend baseline latency over time.
• Respond quickly to traffic bursts that cause changes in the reported latency.
Sub-millisecond reporting is necessary for these customers, since many campus and backbones are currently delivering under a second of latency across several switch hops. Electronic trading environments have generally worked to eliminate or minimize all areas of device and network latency to deliver rapid order fulfillment to the business. Reporting that network response times are "just under one millisecond" is no longer sufficient; the granularity of latency measurements reported across a network segment or backbone need to be closer to 300-800 micro-seconds with a degree of resolution of 100 ì seconds.
IP SLA recently added support for IP multicast test streams, which can measure market data latency.
A typical network topology is shown in Figure 11 with the IP SLA shadow routers, sources, and responders.
Figure 11 IP SLA Deployment.
Serviços de computação.
Computing services cover a wide range of technologies with the goal of eliminating memory and CPU bottlenecks created by the processing of network packets. Trading applications consume high volumes of market data and the servers have to dedicate resources to processing network traffic instead of application processing.
• Transport processing—At high speeds, network packet processing can consume a significant amount of server CPU cycles and memory. An established rule of thumb states that 1Gbps of network bandwidth requires 1 GHz of processor capacity (source Intel white paper on I/O acceleration intel/technology/ioacceleration/306517.pdf).
• Intermediate buffer copying—In a conventional network stack implementation, data needs to be copied by the CPU between network buffers and application buffers. This overhead is worsened by the fact that memory speeds have not kept up with increases in CPU speeds. For example, processors like the Intel Xeon are approaching 4 GHz, while RAM chips hover around 400MHz (for DDR 3200 memory) (source Intel intel/technology/ioacceleration/306517.pdf).
• Context switching—Every time an individual packet needs to be processed, the CPU performs a context switch from application context to network traffic context. This overhead could be reduced if the switch would occur only when the whole application buffer is complete.
Figure 12 Sources of Overhead in Data Center Servers.
• TCP Offload Engine (TOE)—Offloads transport processor cycles to the NIC. Moves TCP/IP protocol stack buffer copies from system memory to NIC memory.
• Remote Direct Memory Access (RDMA)—Enables a network adapter to transfer data directly from application to application without involving the operating system. Eliminates intermediate and application buffer copies (memory bandwidth consumption).
• Kernel bypass — Direct user-level access to hardware. Dramatically reduces application context switches.
Figure 13 RDMA and Kernel Bypass.
InfiniBand is a point-to-point (switched fabric) bidirectional serial communication link which implements RDMA, among other features. Cisco offers an InfiniBand switch, the Server Fabric Switch (SFS): cisco/application/pdf/en/us/guest/netsol/ns500/c643/cdccont_0900aecd804c35cb. pdf.
Figure 14 Typical SFS Deployment.
Trading applications benefit from the reduction in latency and latency variability, as proved by a test performed with the Cisco SFS and Wombat Feed Handlers by Stac Research:
Application Virtualization Service.
De-coupling the application from the underlying OS and server hardware enables them to run as network services. One application can be run in parallel on multiple servers, or multiple applications can be run on the same server, as the best resource allocation dictates. This decoupling enables better load balancing and disaster recovery for business continuance strategies. The process of re-allocating computing resources to an application is dynamic. Using an application virtualization system like Data Synapse's GridServer, applications can migrate, using pre-configured policies, to under-utilized servers in a supply-matches-demand process (networkworld/supp/2005/ndc1/022105virtual. html? page=2).
There are many business advantages for financial firms who adopt application virtualization:
• Faster time to market for new products and services.
• Faster integration of firms following merger and acquisition activity.
• Increased application availability.
• Better workload distribution, which creates more "head room" for processing spikes in trading volume.
• Operational efficiency and control.
• Reduction in IT complexity.
Currently, application virtualization is not used in the trading front-office. One use-case is risk modeling, like Monte Carlo simulations. As the technology evolves, it is conceivable that some the trading platforms will adopt it.
Data Virtualization Service.
To effectively share resources across distributed enterprise applications, firms must be able to leverage data across multiple sources in real-time while ensuring data integrity. With solutions from data virtualization software vendors such as Gemstone or Tangosol (now Oracle), financial firms can access heterogeneous sources of data as a single system image that enables connectivity between business processes and unrestrained application access to distributed caching. The net result is that all users have instant access to these data resources across a distributed network (gridtoday/03/0210/101061.html).
This is called a data grid and is the first step in the process of creating what Gartner calls Extreme Transaction Processing (XTP) (gartner/DisplayDocument? ref=g_search&id=500947). Technologies such as data and applications virtualization enable financial firms to perform real-time complex analytics, event-driven applications, and dynamic resource allocation.
One example of data virtualization in action is a global order book application. An order book is the repository of active orders that is published by the exchange or other market makers. A global order book aggregates orders from around the world from markets that operate independently. The biggest challenge for the application is scalability over WAN connectivity because it has to maintain state. Today's data grids are localized in data centers connected by Metro Area Networks (MAN). This is mainly because the applications themselves have limits—they have been developed without the WAN in mind.
Figure 15 GemStone GemFire Distributed Caching.
Before data virtualization, applications used database clustering for failover and scalability. This solution is limited by the performance of the underlying database. Failover is slower because the data is committed to disc. With data grids, the data which is part of the active state is cached in memory, which reduces drastically the failover time. Scaling the data grid means just adding more distributed resources, providing a more deterministic performance compared to a database cluster.
Multicast Service.
Market data delivery is a perfect example of an application that needs to deliver the same data stream to hundreds and potentially thousands of end users. Market data services have been implemented with TCP or UDP broadcast as the network layer, but those implementations have limited scalability. Using TCP requires a separate socket and sliding window on the server for each recipient. UDP broadcast requires a separate copy of the stream for each destination subnet. Both of these methods exhaust the resources of the servers and the network. The server side must transmit and service each of the streams individually, which requires larger and larger server farms. On the network side, the required bandwidth for the application increases in a linear fashion. For example, to send a 1 Mbps stream to 1000recipients using TCP requires 1 Gbps of bandwidth.
IP multicast is the only way to scale market data delivery. To deliver a 1 Mbps stream to 1000 recipients, IP multicast would require 1 Mbps. The stream can be delivered by as few as two servers—one primary and one backup for redundancy.
There are two main phases of market data delivery to the end user. In the first phase, the data stream must be brought from the exchange into the brokerage's network. Typically the feeds are terminated in a data center on the customer premise. The feeds are then processed by a feed handler, which may normalize the data stream into a common format and then republish into the application messaging servers in the data center.
The second phase involves injecting the data stream into the application messaging bus which feeds the core infrastructure of the trading applications. The large brokerage houses have thousands of applications that use the market data streams for various purposes, such as live trades, long term trending, arbitrage, etc. Many of these applications listen to the feeds and then republish their own analytical and derivative information. For example, a brokerage may compare the prices of CSCO to the option prices of CSCO on another exchange and then publish ratings which a different application may monitor to determine how much they are out of synchronization.
Figure 16 Market Data Distribution Players.
The delivery of these data streams is typically over a reliable multicast transport protocol, traditionally Tibco Rendezvous. Tibco RV operates in a publish and subscribe environment. Each financial instrument is given a subject name, such as CSCO. last. Each application server can request the individual instruments of interest by their subject name and receive just a that subset of the information. This is called subject-based forwarding or filtering. Subject-based filtering is patented by Tibco.
A distinction should be made between the first and second phases of market data delivery. The delivery of market data from the exchange to the brokerage is mostly a one-to-many application. The only exception to the unidirectional nature of market data may be retransmission requests, which are usually sent using unicast. The trading applications, however, are definitely many-to-many applications and may interact with the exchanges to place orders.
Figure 17 Market Data Architecture.
Design Issues.
Number of Groups/Channels to Use.
Many application developers consider using thousand of multicast groups to give them the ability to divide up products or instruments into small buckets. Normally these applications send many small messages as part of their information bus. Usually several messages are sent in each packet that are received by many users. Sending fewer messages in each packet increases the overhead necessary for each message.
In the extreme case, sending only one message in each packet quickly reaches the point of diminishing returns—there is more overhead sent than actual data. Application developers must find a reasonable compromise between the number of groups and breaking up their products into logical buckets.
Consider, for example, the Nasdaq Quotation Dissemination Service (NQDS). The instruments are broken up alphabetically:
Another example is the Nasdaq Totalview service, broken up this way:
This approach allows for straight forward network/application management, but does not necessarily allow for optimized bandwidth utilization for most users. A user of NQDS that is interested in technology stocks, and would like to subscribe to just CSCO and INTL, would have to pull down all the data for the first two groups of NQDS. Understanding the way users pull down the data and then organize it into appropriate logical groups optimizes the bandwidth for each user.
In many market data applications, optimizing the data organization would be of limited value. Typically customers bring in all data into a few machines and filter the instruments. Using more groups is just more overhead for the stack and does not help the customers conserve bandwidth. Another approach might be to keep the groups down to a minimum level and use UDP port numbers to further differentiate if necessary. The other extreme would be to use just one multicast group for the entire application and then have the end user filter the data. In some situations this may be sufficient.
Intermittent Sources.
A common issue with market data applications are servers that send data to a multicast group and then go silent for more than 3.5 minutes. These intermittent sources may cause trashing of state on the network and can introduce packet loss during the window of time when soft state and then hardware shorts are being created.
PIM-Bidir or PIM-SSM.
The first and best solution for intermittent sources is to use PIM-Bidir for many-to-many applications and PIM-SSM for one-to-many applications.
Both of these optimizations of the PIM protocol do not have any data-driven events in creating forwarding state. That means that as long as the receivers are subscribed to the streams, the network has the forwarding state created in the hardware switching path.
Intermittent sources are not an issue with PIM-Bidir and PIM-SSM.
Null Packets.
In PIM-SM environments a common method to make sure forwarding state is created is to send a burst of null packets to the multicast group before the actual data stream. The application must efficiently ignore these null data packets to ensure it does not affect performance. The sources must only send the burst of packets if they have been silent for more than 3 minutes. A good practice is to send the burst if the source is silent for more than a minute. Many financials send out an initial burst of traffic in the morning and then all well-behaved sources do not have problems.
Periodic Keepalives or Heartbeats.
An alternative approach for PIM-SM environments is for sources to send periodic heartbeat messages to the multicast groups. This is a similar approach to the null packets, but the packets can be sent on a regular timer so that the forwarding state never expires.
S, G Expiry Timer.
Finally, Cisco has made a modification to the operation of the S, G expiry timer in IOS. There is now a CLI knob to allow the state for a S, G to stay alive for hours without any traffic being sent. The (S, G) expiry timer is configurable. This approach should be considered a workaround until PIM-Bidir or PIM-SSM is deployed or the application is fixed.
RTCP Feedback.
A common issue with real time voice and video applications that use RTP is the use of RTCP feedback traffic. Unnecessary use of the feedback option can create excessive multicast state in the network. If the RTCP traffic is not required by the application it should be avoided.
Fast Producers and Slow Consumers.
Today many servers providing market data are attached at Gigabit speeds, while the receivers are attached at different speeds, usually 100Mbps. This creates the potential for receivers to drop packets and request re-transmissions, which creates more traffic that the slowest consumers cannot handle, continuing the vicious circle.
The solution needs to be some type of access control in the application that limits the amount of data that one host can request. QoS and other network functions can mitigate the problem, but ultimately the subscriptions need to be managed in the application.
Tibco Heartbeats.
TibcoRV has had the ability to use IP multicast for the heartbeat between the TICs for many years. However, there are some brokerage houses that are still using very old versions of TibcoRV that use UDP broadcast support for the resiliency. This limitation is often cited as a reason to maintain a Layer 2 infrastructure between TICs located in different data centers. These older versions of TibcoRV should be phased out in favor of the IP multicast supported versions.
Multicast Forwarding Options.
PIM Sparse Mode.
The standard IP multicast forwarding protocol used today for market data delivery is PIM Sparse Mode. It is supported on all Cisco routers and switches and is well understood. PIM-SM can be used in all the network components from the exchange, FSP, and brokerage.
There are, however, some long-standing issues and unnecessary complexity associated with a PIM-SM deployment that could be avoided by using PIM-Bidir and PIM-SSM. These are covered in the next sections.
The main components of the PIM-SM implementation are:
• PIM Sparse Mode v2.
• Shared Tree (spt-threshold infinity)
A design option in the brokerage or in the exchange.
Details of Anycast RP can be found in:
The classic high availability design for Tibco in the brokerage network is documented in:
Bidirectional PIM.
PIM-Bidir is an optimization of PIM Sparse Mode for many-to-many applications. It has several key advantages over a PIM-SM deployment:
• Better support for intermittent sources.
• No data-triggered events.
One of the weaknesses of PIM-SM is that the network continually needs to react to active data flows. This can cause non-deterministic behavior that may be hard to troubleshoot. PIM-Bidir has the following major protocol differences over PIM-SM:
– No source registration.
Source traffic is automatically sent to the RP and then down to the interested receivers. There is no unicast encapsulation, PIM joins from the RP to the first hop router and then registration stop messages.
All PIM-Bidir traffic is forwarded on a *,G forwarding entry. The router does not have to monitor the traffic flow on a *,G and then send joins when the traffic passes a threshold.
– No need for an actual RP.
The RP does not have an actual protocol function in PIM-Bidir. The RP acts as a routing vector in which all the traffic converges. The RP can be configured as an address that is not assigned to any particular device. This is called a Phantom RP.
– No need for MSDP.
MSDP provides source information between RPs in a PIM-SM network. PIM-Bidir does not use the active source information for any forwarding decisions and therefore MSDP is not required.
Bidirectional PIM is ideally suited for the brokerage network in the data center of the exchange. In this environment there are many sources sending to a relatively few set of groups in a many-to-many traffic pattern.
The key components of the PIM-Bidir implementation are:
Further details about Phantom RP and basic PIM-Bidir design are documented in:
Source Specific Multicast.
PIM-SSM is an optimization of PIM Sparse Mode for one-to-many applications. In certain environments it can offer several distinct advantages over PIM-SM. Like PIM-Bidir, PIM-SSM does not rely on any data-triggered events. Furthermore, PIM-SSM does not require an RP at all—there is no such concept in PIM-SSM. The forwarding information in the network is completely controlled by the interest of the receivers.
Source Specific Multicast is ideally suited for market data delivery in the financial service provider. The FSP can receive the feeds from the exchanges and then route them to the end of their network.
Many FSPs are also implementing MPLS and Multicast VPNs in their core. PIM-SSM is the preferred method for transporting traffic in VRFs.
When PIM-SSM is deployed all the way to the end user, the receiver indicates his interest in a particular S, G with IGMPv3. Even though IGMPv3 was defined by RFC 2236 back in October, 2002, it still has not been implemented by all edge devices. This creates a challenge for deploying an end-to-end PIM-SSM service. A transitional solution has been developed by Cisco to enable an edge device that supports IGMPv2 to participate in an PIM-SSM service. This feature is called SSM Mapping and is documented in:
Storage Services.
The service provides storage capabilities into the market data and trading environments. Trading applications access backend storage to connect to different databases and other repositories consisting of portfolios, trade settlements, compliance data, management applications, Enterprise Service Bus (ESB), and other critical applications where reliability and security is critical to the success of the business. The main requirements for the service are:
Storage virtualization is an enabling technology that simplifies management of complex infrastructures, enables non-disruptive operations, and facilitates critical elements of a proactive information lifecycle management (ILM) strategy. EMC Invista running on the Cisco MDS 9000 enables heterogeneous storage pooling and dynamic storage provisioning, allowing allocation of any storage to any application. High availability is increased with seamless data migration. Appropriate class of storage is allocated to point-in-time copies (clones). Storage virtualization is also leveraged through the use of Virtual Storage Area Networks (VSANs), which enable the consolidation of multiple isolated SANs onto a single physical SAN infrastructure, while still partitioning them as completely separate logical entities. VSANs provide all the security and fabric services of traditional SANs, yet give organizations the flexibility to easily move resources from one VSAN to another. This results in increased disk and network utilization while driving down the cost of management. Integrated Inter VSAN Routing (IVR) enables sharing of common resources across VSANs.
Figure 18 High Performance Computing Storage.
Replication of data to a secondary and tertiary data center is crucial for business continuance. Replication offsite over Fiber Channel over IP (FCIP) coupled with write acceleration and tape acceleration provides improved performance over long distance. Continuous Data Replication (CDP) is another mechanism which is gaining popularity in the industry. It refers to backup of computer data by automatically saving a copy of every change made to that data, essentially capturing every version of the data that the user saves. It allows the user or administrator to restore data to any point in time. Solutions from EMC and Incipient utilize the SANTap protocol on the Storage Services Module (SSM) in the MDS platform to provide CDP functionality. The SSM uses the SANTap service to intercept and redirect a copy of a write between a given initiator and target. The appliance does not reside in the data path—it is completely passive. The CDP solutions typically leverage a history journal that tracks all changes and bookmarks that identify application-specific events. This ensures that data at any point in time is fully self-consistent and is recoverable instantly in the event of a site failure.
Backup procedure reliability and performance are extremely important when storing critical financial data to a SAN. The use of expensive media servers to move data from disk to tape devices can be cumbersome. Network-accelerated serverless backup (NASB) helps you back up increased amounts of data in shorter backup time frames by shifting the data movement from multiple backup servers to Cisco MDS 9000 Series multilayer switches. This technology decreases impact on application servers because the MDS offloads the application and backup servers. It also reduces the number of backup and media servers required, thus reducing CAPEX and OPEX. The flexibility of the backup environment increases because storage and tape drives can reside anywhere on the SAN.
Trading Resilience and Mobility.
The main requirements for this service are to provide the virtual trader:
• Fully scalable and redundant campus trading environment.
• Resilient server load balancing and high availability in analytic server farms.
• Global site load balancing that provide the capability to continue participating in the market venues of closest proximity.
A highly-available campus environment is capable of sustaining multiple failures (i. e., links, switches, modules, etc.), which provides non-disruptive access to trading systems for traders and market data feeds. Fine-tuned routing protocol timers, in conjunction with mechanisms such as NSF/SSO, provide subsecond recovery from any failure.
The high-speed interconnect between data centers can be DWDM/dark fiber, which provides business continuance in case of a site failure. Each site is 100km-200km apart, allowing synchronous data replication. Usually the distance for synchronous data replication is 100km, but with Read/Write Acceleration it can stretch to 200km. A tertiary data center can be greater than 200km away, which would replicate data in an asynchronous fashion.
Figure 19 Trading Resilience.
A robust server load balancing solution is required for order routing, algorithmic trading, risk analysis, and other services to offer continuous access to clients regardless of a server failure. Multiple servers encompass a "farm" and these hosts can added/removed without disruption since they reside behind a virtual IP (VIP) address which is announced in the network.
A global site load balancing solution provides remote traders the resiliency to access trading environments which are closer to their location. This minimizes latency for execution times since requests are always routed to the nearest venue.
Figure 20 Virtualization of Trading Environment.
A trading environment can be virtualized to provide segmentation and resiliency in complex architectures. Figure 20 illustrates a high-level topology depicting multiple market data feeds entering the environment, whereby each vendor is assigned its own Virtual Routing and Forwarding (VRF) instance. The market data is transferred to a high-speed InfiniBand low-latency compute fabric where feed handlers, order routing systems, and algorithmic trading systems reside. All storage is accessed via a SAN and is also virtualized with VSANs, allowing further security and segmentation. The normalized data from the compute fabric is transferred to the campus trading environment where the trading desks reside.
Wide Area Application Services.
This service provides application acceleration and optimization capabilities for traders who are located outside of the core trading floor facility/data center and working from a remote office. To consolidate servers and increase security in remote offices, file servers, NAS filers, storage arrays, and tape drives are moved to a corporate data center to increase security and regulatory compliance and facilitate centralized storage and archival management. As the traditional trading floor is becoming more virtual, wide area application services technology is being utilized to provide a "LAN-like" experience to remote traders when they access resources at the corporate site. Traders often utilize Microsoft Office applications, especially Excel in addition to Sharepoint and Exchange. Excel is used heavily for modeling and permutations where sometime only small portions of the file are changed. CIFS protocol is notoriously known to be "chatty," where several message normally traverse the WAN for a simple file operation and it is addressed by Wide Area Application Service (WAAS) technology. Bloomberg and Reuters applications are also very popular financial tools which access a centralized SAN or NAS filer to retrieve critical data which is fused together before represented to a trader's screen.
Figure 21 Wide Area Optimization.
A pair of Wide Area Application Engines (WAEs) that reside in the remote office and the data center provide local object caching to increase application performance. The remote office WAEs can be a module in the ISR router or a stand-alone appliance. The data center WAE devices are load balanced behind an Application Control Engine module installed in a pair of Catalyst 6500 series switches at the aggregation layer. The WAE appliance farm is represented by a virtual IP address. The local router in each site utilizes Web Cache Communication Protocol version 2 (WCCP v2) to redirect traffic to the WAE that intercepts the traffic and determines if there is a cache hit or miss. The content is served locally from the engine if it resides in cache; otherwise the request is sent across the WAN the initial time to retrieve the object. This methodology optimizes the trader experience by removing application latency and shielding the individual from any congestion in the WAN.
WAAS uses the following technologies to provide application acceleration:
• Data Redundancy Elimination (DRE) is an advanced form of network compression which allows the WAE to maintain a history of previously-seen TCP message traffic for the purposes of reducing redundancy found in network traffic. This combined with the Lempel-Ziv (LZ) compression algorithm reduces the number of redundant packets that traverse the WAN, which improves application transaction performance and conserves bandwidth.
• Transport Flow Optimization (TFO) employs a robust TCP proxy to safely optimize TCP at the WAE device by applying TCP-compliant optimizations to shield the clients and servers from poor TCP behavior because of WAN conditions. By running a TCP proxy between the devices and leveraging an optimized TCP stack between the devices, many of the problems that occur in the WAN are completely blocked from propagating back to trader desktops. The traders experience LAN-like TCP response times and behavior because the WAE is terminating TCP locally. TFO improves reliability and throughput through increases in TCP window scaling and sizing enhancements in addition to superior congestion management.
Thin Client Service.
This service provides a "thin" advanced trading desktop which delivers significant advantages to demanding trading floor environments requiring continuous growth in compute power. As financial institutions race to provide the best trade executions for their clients, traders are utilizing several simultaneous critical applications that facilitate complex transactions. It is not uncommon to find three or more workstations and monitors at a trader's desk which provide visibility into market liquidity, trading venues, news, analysis of complex portfolio simulations, and other financial tools. In addition, market dynamics continue to evolve with Direct Market Access (DMA), ECNs, alternative trading volumes, and upcoming regulation changes with Regulation National Market System (RegNMS) in the US and Markets in Financial Instruments Directive (MiFID) in Europe. At the same time, business seeks greater control, improved ROI, and additional flexibility, which creates greater demands on trading floor infrastructures.
Traders no longer require multiple workstations at their desk. Thin clients consist of keyboard, mouse, and multi-displays which provide a total trader desktop solution without compromising security. Hewlett Packard, Citrix, Desktone, Wyse, and other vendors provide thin client solutions to capitalize on the virtual desktop paradigm. Thin clients de-couple the user-facing hardware from the processing hardware, thus enabling IT to grow the processing power without changing anything on the end user side. The workstation computing power is stored in the data center on blade workstations, which provide greater scalability, increased data security, improved business continuance across multiple sites, and reduction in OPEX by removing the need to manage individual workstations on the trading floor. One blade workstation can be dedicated to a trader or shared among multiple traders depending on the requirements for computer power.
The "thin client" solution is optimized to work in a campus LAN environment, but can also extend the benefits to traders in remote locations. Latency is always a concern when there is a WAN interconnecting the blade workstation and thin client devices. The network connection needs to be sized accordingly so traffic is not dropped if saturation points exist in the WAN topology. WAN Quality of Service (QoS) should prioritize sensitive traffic. There are some guidelines which should be followed to allow for an optimized user experience. A typical highly-interactive desktop experience requires a client-to-blade round trip latency of <20ms for a 2Kb packet size. There may be a slight lag in display if network latency is between 20ms to 40ms. A typical trader desk with a four multi-display terminal requires 2-3Mbps bandwidth consumption with seamless communication with blade workstation(s) in the data center. Streaming video (800x600 at 24fps/full color) requires 9 Mbps bandwidth usage.
Figure 22 Thin Client Architecture.
Management of a large thin client environment is simplified since a centralized IT staff manages all of the blade workstations dispersed across multiple data centers. A trader is redirected to the most available environment in the enterprise in the event of a particular site failure. High availability is a key concern in critical financial environments and the Blade Workstation design provides rapid provisioning of another blade workstation in the data center. This resiliency provides greater uptime, increases in productivity, and OpEx reduction.

Bt trading systems


A Trading System Support é o maior provedor independente global e mantenedor da Dealer Voice Solution. Mantemos, atualizamos e instalamos sistemas usados ​​de todos os principais fabricantes de voz de revendedores, incluindo Etrali, IPC, BT Syntegra e Speakerbus, IP Trade e Enepath.
Nossos serviços incluem.
Manutenção e Suporte para todos os Hardware de Voz de Revendedores de Fim de Vida.
O TSS é o único mantenedor global que pode oferecer suporte contínuo para todas as soluções atuais de revendedor de voz. Podemos fornecer uma solução de expansão e atualização contínua, trazendo seu hardware legado para o século XXI.
A TSS opera um dos maiores sistemas de voz de revendedores hospedados em todo o mundo. Temos mais de 100 torres de mais de 20 clientes conectados globalmente à plataforma de Londres. Nossa solução oferece conectividade rápida, simples e econômica para a rede de voz do revendedor, a partir de qualquer local global, por meio de um serviço básico de Internet. Complete com gravação de voz e acesso de discagem local via comerciantes de troncos SIP pode ser conectado dentro de 24 horas.
Fornecimento e instalação de soluções de voz do revendedor de todos os fornecedores conhecidos.
O TSS pode fornecer soluções completas para atender aos requisitos de qualquer cliente. Atualmente, detemos mais de £ 250.000 de ações da IPC, Etrali e Speakerbus. As peças sobressalentes podem ser entregues no mesmo dia em qualquer local central. Nossos engenheiros treinados podem fornecer um serviço rápido e profissional de instalação e consultoria.
O TSS pode fornecer uma solução econômica para manter o hardware de gravação de fim de vida existente da NICE, CYBERTECH e VERINT.
A TSS é um Parceiro Comercial IP autorizado, fornecendo a tecnologia Cisco mais recente para o desktop de trader.
Enepath é o mais recente torret baseado em tablet t ser lançado no mercado. Apoiado por uma das maiores corporações globais de telecomunicações, está programado para mudar a maneira como os sistemas de voz dos revendedores são modelados no mundo financeiro do futuro.
A TSS opera serviços internos de gateways SIP para fornecer conectividade global com reduções de custos de até 70% em linhas de corretoras internacionais. Ao tornar-se um membro do “CNS” dos Serviços de Rede Principais da TSS, oferecemos aos clientes uma extensão de sua rede existente para qualquer cidade global. A partir daí, eles podem solicitar e gerenciar os requisitos de voz do revendedor a uma taxa local.
TSS atualmente completando o seu primeiro Site de Continuidade de Negócios. Baseada em Essex, esta solução oferece um mecanismo completo de negociação como um local DR ou ambiente de trabalho.
Nosso serviço de manutenção permite aos clientes a liberdade de manter suas plataformas existentes por muito tempo após a política de fim de vida aplicada pelos fabricantes, economizando custos no momento em que isso é importante, permitindo que o cliente decida quando atualiza sua tecnologia.
Fornecemos aos nossos clientes consultoria independente sobre sua estratégia de TI, soluções de voz e telefonia para revendedores, soluções de gravação de voz e serviços de realocação interna / externa. Consultamos, projetamos e implementamos os produtos e a tecnologia mais recentes, independentemente dos principais fornecedores do mundo. Apoiamos e mantemos muitas das plataformas de negociação de ponta e legado.
Em cada estágio, agregamos valor aos nossos clientes reduzindo os custos de TI, melhorando a eficiência e a produtividade dos negócios, ao mesmo tempo em que fornecemos suporte contínuo e retorno do investimento por meio de nosso excelente portfólio de serviços.
Cada cliente é um cliente valioso e trabalhamos para garantir que mantemos os mais altos padrões em todos os projetos.
A Trading Support Services é o provedor preferencial de produtos de infraestrutura para o setor de Serviços Financeiros Globais. Com base em muitos anos de experiência trabalhando no setor de serviços financeiros, podemos oferecer aos nossos clientes uma solução focada no mercado para qualquer requisito. Nossos clientes incluem os principais fundos de hedge, fundos de fundos, firmas de trading proprietárias, criadores de mercado, corretores / corretores, private equity houses, bolsas e bancos de investimento globais.

Oops, this website is unavailable.
If this is your site, please contact support via 123-reg. co. uk/support/
If you are looking to create your own site, with 123-reg. co. uk it's easier than you think.
No matter your skill level, we can help you build a great site and get it online in no time.
If you're just starting out with your first website, our Essentials hosting package may just be the perfect solution for you. Not only does it include all the features you need to get your brand new site online and make it a success, but it also offers amazing value for money, starting at just £2.49 a month. It might be our cheapest hosting solution, but we can assure you we haven't skimped on quality. We'll get you started with a free. co. uk domain name on the house, unlimited bandwidth, plenty of web space and all the features you need to get your site up and running in a matter of minutes. And the best thing about it is that you won't need any technical knowledge to set up your blog or website.
When your site starts to grow and you need more flexibility and power, you can always upgrade to a higher package that comes with even more features and perks you'll love.
Looking to get a website up and running quickly? With our Website Builder you can build and launch a new site in minutes even if you have little or no technical knowledge. It s ideal for anyone on a budget who wants a site that s easy to set up and manage, whether it s a presentation website or a basic online shop.
Using the drag and drop interface and the large range of templates available at your disposal you can quickly build a professional looking website that looks great on all devices - desktops, tablets and smartphones. The 123-reg Website Builder is packed with everything you need to get your business online, including a free domain name, web space, email addresses as well as built-in search engine optimisation tools to get found by new customers.

Trading Floor Architecture.
Available Languages.
Download Options.
View with Adobe Reader on a variety of devices.
Índice.
Trading Floor Architecture.
Executive Overview.
Increased competition, higher market data volume, and new regulatory demands are some of the driving forces behind industry changes. Firms are trying to maintain their competitive edge by constantly changing their trading strategies and increasing the speed of trading.
A viable architecture has to include the latest technologies from both network and application domains. It has to be modular to provide a manageable path to evolve each component with minimal disruption to the overall system. Therefore the architecture proposed by this paper is based on a services framework. We examine services such as ultra-low latency messaging, latency monitoring, multicast, computing, storage, data and application virtualization, trading resiliency, trading mobility, and thin client.
The solution to the complex requirements of the next-generation trading platform must be built with a holistic mindset, crossing the boundaries of traditional silos like business and technology or applications and networking.
This document's main goal is to provide guidelines for building an ultra-low latency trading platform while optimizing the raw throughput and message rate for both market data and FIX trading orders.
To achieve this, we are proposing the following latency reduction technologies:
• High speed inter-connect—InfiniBand or 10 Gbps connectivity for the trading cluster.
• High-speed messaging bus.
• Application acceleration via RDMA without application re-code.
• Real-time latency monitoring and re-direction of trading traffic to the path with minimum latency.
Industry Trends and Challenges.
Next-generation trading architectures have to respond to increased demands for speed, volume, and efficiency. For example, the volume of options market data is expected to double after the introduction of options penny trading in 2007. There are also regulatory demands for best execution, which require handling price updates at rates that approach 1M msg/sec. for exchanges. They also require visibility into the freshness of the data and proof that the client got the best possible execution.
In the short term, speed of trading and innovation are key differentiators. An increasing number of trades are handled by algorithmic trading applications placed as close as possible to the trade execution venue. A challenge with these "black-box" trading engines is that they compound the volume increase by issuing orders only to cancel them and re-submit them. The cause of this behavior is lack of visibility into which venue offers best execution. The human trader is now a "financial engineer," a "quant" (quantitative analyst) with programming skills, who can adjust trading models on the fly. Firms develop new financial instruments like weather derivatives or cross-asset class trades and they need to deploy the new applications quickly and in a scalable fashion.
In the long term, competitive differentiation should come from analysis, not just knowledge. The star traders of tomorrow assume risk, achieve true client insight, and consistently beat the market (source IBM: www-935.ibm/services/us/imc/pdf/ge510-6270-trader. pdf).
Business resilience has been one main concern of trading firms since September 11, 2001. Solutions in this area range from redundant data centers situated in different geographies and connected to multiple trading venues to virtual trader solutions offering power traders most of the functionality of a trading floor in a remote location.
The financial services industry is one of the most demanding in terms of IT requirements. The industry is experiencing an architectural shift towards Services-Oriented Architecture (SOA), Web services, and virtualization of IT resources. SOA takes advantage of the increase in network speed to enable dynamic binding and virtualization of software components. This allows the creation of new applications without losing the investment in existing systems and infrastructure. The concept has the potential to revolutionize the way integration is done, enabling significant reductions in the complexity and cost of such integration (gigaspaces/download/MerrilLynchGigaSpacesWP. pdf).
Another trend is the consolidation of servers into data center server farms, while trader desks have only KVM extensions and ultra-thin clients (e. g., SunRay and HP blade solutions). High-speed Metro Area Networks enable market data to be multicast between different locations, enabling the virtualization of the trading floor.
High-Level Architecture.
Figure 1 depicts the high-level architecture of a trading environment. The ticker plant and the algorithmic trading engines are located in the high performance trading cluster in the firm's data center or at the exchange. The human traders are located in the end-user applications area.
Functionally there are two application components in the enterprise trading environment, publishers and subscribers. The messaging bus provides the communication path between publishers and subscribers.
There are two types of traffic specific to a trading environment:
• Market Data—Carries pricing information for financial instruments, news, and other value-added information such as analytics. It is unidirectional and very latency sensitive, typically delivered over UDP multicast. It is measured in updates/sec. and in Mbps. Market data flows from one or multiple external feeds, coming from market data providers like stock exchanges, data aggregators, and ECNs. Each provider has their own market data format. The data is received by feed handlers, specialized applications which normalize and clean the data and then send it to data consumers, such as pricing engines, algorithmic trading applications, or human traders. Sell-side firms also send the market data to their clients, buy-side firms such as mutual funds, hedge funds, and other asset managers. Some buy-side firms may opt to receive direct feeds from exchanges, reducing latency.
Figure 1 Trading Architecture for a Buy Side/Sell Side Firm.
There is no industry standard for market data formats. Each exchange has their proprietary format. Financial content providers such as Reuters and Bloomberg aggregate different sources of market data, normalize it, and add news or analytics. Examples of consolidated feeds are RDF (Reuters Data Feed), RWF (Reuters Wire Format), and Bloomberg Professional Services Data.
To deliver lower latency market data, both vendors have released real-time market data feeds which are less processed and have less analytics:
– Bloomberg B-Pipe—With B-Pipe, Bloomberg de-couples their market data feed from their distribution platform because a Bloomberg terminal is not required for get B-Pipe. Wombat and Reuters Feed Handlers have announced support for B-Pipe.
A firm may decide to receive feeds directly from an exchange to reduce latency. The gains in transmission speed can be between 150 milliseconds to 500 milliseconds. These feeds are more complex and more expensive and the firm has to build and maintain their own ticker plant (financetech/featured/showArticle. jhtml? articleID=60404306).
• Trading Orders—This type of traffic carries the actual trades. It is bi-directional and very latency sensitive. It is measured in messages/sec. and Mbps. The orders originate from a buy side or sell side firm and are sent to trading venues like an Exchange or ECN for execution. The most common format for order transport is FIX (Financial Information eXchange—fixprotocol/). The applications which handle FIX messages are called FIX engines and they interface with order management systems (OMS).
An optimization to FIX is called FAST (Fix Adapted for Streaming), which uses a compression schema to reduce message length and, in effect, reduce latency. FAST is targeted more to the delivery of market data and has the potential to become a standard. FAST can also be used as a compression schema for proprietary market data formats.
To reduce latency, firms may opt to establish Direct Market Access (DMA).
DMA is the automated process of routing a securities order directly to an execution venue, therefore avoiding the intervention by a third-party (towergroup/research/content/glossary. jsp? page=1&glossaryId=383). DMA requires a direct connection to the execution venue.
The messaging bus is middleware software from vendors such as Tibco, 29West, Reuters RMDS, or an open source platform such as AMQP. The messaging bus uses a reliable mechanism to deliver messages. The transport can be done over TCP/IP (TibcoEMS, 29West, RMDS, and AMQP) or UDP/multicast (TibcoRV, 29West, and RMDS). One important concept in message distribution is the "topic stream," which is a subset of market data defined by criteria such as ticker symbol, industry, or a certain basket of financial instruments. Subscribers join topic groups mapped to one or multiple sub-topics in order to receive only the relevant information. In the past, all traders received all market data. At the current volumes of traffic, this would be sub-optimal.
The network plays a critical role in the trading environment. Market data is carried to the trading floor where the human traders are located via a Campus or Metro Area high-speed network. High availability and low latency, as well as high throughput, are the most important metrics.
The high performance trading environment has most of its components in the Data Center server farm. To minimize latency, the algorithmic trading engines need to be located in the proximity of the feed handlers, FIX engines, and order management systems. An alternate deployment model has the algorithmic trading systems located at an exchange or a service provider with fast connectivity to multiple exchanges.
Deployment Models.
There are two deployment models for a high performance trading platform. Firms may chose to have a mix of the two:
• Data Center of the trading firm (Figure 2)—This is the traditional model, where a full-fledged trading platform is developed and maintained by the firm with communication links to all the trading venues. Latency varies with the speed of the links and the number of hops between the firm and the venues.
Figure 2 Traditional Deployment Model.
• Co-location at the trading venue (exchanges, financial service providers (FSP)) (Figure 3)
The trading firm deploys its automated trading platform as close as possible to the execution venues to minimize latency.
Figure 3 Hosted Deployment Model.
Services-Oriented Trading Architecture.
We are proposing a services-oriented framework for building the next-generation trading architecture. This approach provides a conceptual framework and an implementation path based on modularization and minimization of inter-dependencies.
This framework provides firms with a methodology to:
• Evaluate their current state in terms of services.
• Prioritize services based on their value to the business.
• Evolve the trading platform to the desired state using a modular approach.
The high performance trading architecture relies on the following services, as defined by the services architecture framework represented in Figure 4.
Figure 4 Service Architecture Framework for High Performance Trading.
Table 1 Service Descriptions and Technologies.
Ultra-low latency messaging.
Instrumentation—appliances, software agents, and router modules.
OS and I/O virtualization, Remote Direct Memory Access (RDMA), TCP Offload Engines (TOE)
Middleware which parallelizes application processing.
Middleware which speeds-up data access for applications, e. g., in-memory caching.
Hardware-assisted multicast replication through-out the network; multicast Layer 2 and Layer 3 optimizations.
Virtualization of storage hardware (VSANs), data replication, remote backup, and file virtualization.
Trading resilience and mobility.
Local and site load balancing and high availability campus networks.
Wide Area application services.
Acceleration of applications over a WAN connection for traders residing off-campus.
Thin client service.
De-coupling of the computing resources from the end-user facing terminals.
Ultra-Low Latency Messaging Service.
This service is provided by the messaging bus, which is a software system that solves the problem of connecting many-to-many applications. The system consists of:
• A set of pre-defined message schemas.
• A set of common command messages.
• A shared application infrastructure for sending the messages to recipients. The shared infrastructure can be based on a message broker or on a publish/subscribe model.
The key requirements for the next-generation messaging bus are (source 29West):
• Lowest possible latency (e. g., less than 100 microseconds)
• Stability under heavy load (e. g., more than 1.4 million msg/sec.)
• Control and flexibility (rate control and configurable transports)
There are efforts in the industry to standardize the messaging bus. Advanced Message Queueing Protocol (AMQP) is an example of an open standard championed by J. P. Morgan Chase and supported by a group of vendors such as Cisco, Envoy Technologies, Red Hat, TWIST Process Innovations, Iona, 29West, and iMatix. Two of the main goals are to provide a more simple path to inter-operability for applications written on different platforms and modularity so that the middleware can be easily evolved.
In very general terms, an AMQP server is analogous to an E-mail server with each exchange acting as a message transfer agent and each message queue as a mailbox. The bindings define the routing tables in each transfer agent. Publishers send messages to individual transfer agents, which then route the messages into mailboxes. Consumers take messages from mailboxes, which creates a powerful and flexible model that is simple (source: amqp/tikiwiki/tiki-index. php? page=OpenApproach#Why_AMQP_).
Latency Monitoring Service.
The main requirements for this service are:
• Sub-millisecond granularity of measurements.
• Near-real time visibility without adding latency to the trading traffic.
• Ability to differentiate application processing latency from network transit latency.
• Ability to handle high message rates.
• Provide a programmatic interface for trading applications to receive latency data, thus enabling algorithmic trading engines to adapt to changing conditions.
• Correlate network events with application events for troubleshooting purposes.
Latency can be defined as the time interval between when a trade order is sent and when the same order is acknowledged and acted upon by the receiving party.
Addressing the latency issue is a complex problem, requiring a holistic approach that identifies all sources of latency and applies different technologies at different layers of the system.
Figure 5 depicts the variety of components that can introduce latency at each layer of the OSI stack. It also maps each source of latency with a possible solution and a monitoring solution. This layered approach can give firms a more structured way of attacking the latency issue, whereby each component can be thought of as a service and treated consistently across the firm.
Maintaining an accurate measure of the dynamic state of this time interval across alternative routes and destinations can be of great assistance in tactical trading decisions. The ability to identify the exact location of delays, whether in the customer's edge network, the central processing hub, or the transaction application level, significantly determines the ability of service providers to meet their trading service-level agreements (SLAs). For buy-side and sell-side forms, as well as for market-data syndicators, the quick identification and removal of bottlenecks translates directly into enhanced trade opportunities and revenue.
Figure 5 Latency Management Architecture.
Cisco Low-Latency Monitoring Tools.
Traditional network monitoring tools operate with minutes or seconds granularity. Next-generation trading platforms, especially those supporting algorithmic trading, require latencies less than 5 ms and extremely low levels of packet loss. On a Gigabit LAN, a 100 ms microburst can cause 10,000 transactions to be lost or excessively delayed.
Cisco offers its customers a choice of tools to measure latency in a trading environment:
• Bandwidth Quality Manager (BQM) (OEM from Corvil)
• Cisco AON-based Financial Services Latency Monitoring Solution (FSMS)
Bandwidth Quality Manager.
Bandwidth Quality Manager (BQM) 4.0 is a next-generation network application performance management product that enables customers to monitor and provision their network for controlled levels of latency and loss performance. While BQM is not exclusively targeted at trading networks, its microsecond visibility combined with intelligent bandwidth provisioning features make it ideal for these demanding environments.
Cisco BQM 4.0 implements a broad set of patented and patent-pending traffic measurement and network analysis technologies that give the user unprecedented visibility and understanding of how to optimize the network for maximum application performance.
Cisco BQM is now supported on the product family of Cisco Application Deployment Engine (ADE). The Cisco ADE product family is the platform of choice for Cisco network management applications.
BQM Benefits.
Cisco BQM micro-visibility is the ability to detect, measure, and analyze latency, jitter, and loss inducing traffic events down to microsecond levels of granularity with per packet resolution. This enables Cisco BQM to detect and determine the impact of traffic events on network latency, jitter, and loss. Critical for trading environments is that BQM can support latency, loss, and jitter measurements one-way for both TCP and UDP (multicast) traffic. This means it reports seamlessly for both trading traffic and market data feeds.
BQM allows the user to specify a comprehensive set of thresholds (against microburst activity, latency, loss, jitter, utilization, etc.) on all interfaces. BQM then operates a background rolling packet capture. Whenever a threshold violation or other potential performance degradation event occurs, it triggers Cisco BQM to store the packet capture to disk for later analysis. This allows the user to examine in full detail both the application traffic that was affected by performance degradation ("the victims") and the traffic that caused the performance degradation ("the culprits"). This can significantly reduce the time spent diagnosing and resolving network performance issues.
BQM is also able to provide detailed bandwidth and quality of service (QoS) policy provisioning recommendations, which the user can directly apply to achieve desired network performance.
BQM Measurements Illustrated.
To understand the difference between some of the more conventional measurement techniques and the visibility provided by BQM, we can look at some comparison graphs. In the first set of graphs (Figure 6 and Figure 7), we see the difference between the latency measured by BQM's Passive Network Quality Monitor (PNQM) and the latency measured by injecting ping packets every 1 second into the traffic stream.
In Figure 6, we see the latency reported by 1-second ICMP ping packets for real network traffic (it is divided by 2 to give an estimate for the one-way delay). It shows the delay comfortably below about 5ms for almost all of the time.
Figure 6 Latency Reported by 1-Second ICMP Ping Packets for Real Network Traffic.
In Figure 7, we see the latency reported by PNQM for the same traffic at the same time. Here we see that by measuring the one-way latency of the actual application packets, we get a radically different picture. Here the latency is seen to be hovering around 20 ms, with occasional bursts far higher. The explanation is that because ping is sending packets only every second, it is completely missing most of the application traffic latency. In fact, ping results typically only indicate round trip propagation delay rather than realistic application latency across the network.
Figure 7 Latency Reported by PNQM for Real Network Traffic.
In the second example (Figure 8), we see the difference in reported link load or saturation levels between a 5-minute average view and a 5 ms microburst view (BQM can report on microbursts down to about 10-100 nanosecond accuracy). The green line shows the average utilization at 5-minute averages to be low, maybe up to 5 Mbits/s. The dark blue plot shows the 5ms microburst activity reaching between 75 Mbits/s and 100 Mbits/s, the LAN speed effectively. BQM shows this level of granularity for all applications and it also gives clear provisioning rules to enable the user to control or neutralize these microbursts.
Figure 8 Difference in Reported Link Load Between a 5-Minute Average View and a 5 ms Microburst View.
BQM Deployment in the Trading Network.
Figure 9 shows a typical BQM deployment in a trading network.
Figure 9 Typical BQM Deployment in a Trading Network.
BQM can then be used to answer these types of questions:
• Are any of my Gigabit LAN core links saturated for more than X milliseconds? Is this causing loss? Which links would most benefit from an upgrade to Etherchannel or 10 Gigabit speeds?
• What application traffic is causing the saturation of my 1 Gigabit links?
• Is any of the market data experiencing end-to-end loss?
• How much additional latency does the failover data center experience? Is this link sized correctly to deal with microbursts?
• Are my traders getting low latency updates from the market data distribution layer? Are they seeing any delays greater than X milliseconds?
Being able to answer these questions simply and effectively saves time and money in running the trading network.
BQM is an essential tool for gaining visibility in market data and trading environments. It provides granular end-to-end latency measurements in complex infrastructures that experience high-volume data movement. Effectively detecting microbursts in sub-millisecond levels and receiving expert analysis on a particular event is invaluable to trading floor architects. Smart bandwidth provisioning recommendations, such as sizing and what-if analysis, provide greater agility to respond to volatile market conditions. As the explosion of algorithmic trading and increasing message rates continues, BQM, combined with its QoS tool, provides the capability of implementing QoS policies that can protect critical trading applications.
Cisco Financial Services Latency Monitoring Solution.
Cisco and Trading Metrics have collaborated on latency monitoring solutions for FIX order flow and market data monitoring. Cisco AON technology is the foundation for a new class of network-embedded products and solutions that help merge intelligent networks with application infrastructure, based on either service-oriented or traditional architectures. Trading Metrics is a leading provider of analytics software for network infrastructure and application latency monitoring purposes (tradingmetrics/).
The Cisco AON Financial Services Latency Monitoring Solution (FSMS) correlated two kinds of events at the point of observation:
• Network events correlated directly with coincident application message handling.
• Trade order flow and matching market update events.
Using time stamps asserted at the point of capture in the network, real-time analysis of these correlated data streams permits precise identification of bottlenecks across the infrastructure while a trade is being executed or market data is being distributed. By monitoring and measuring latency early in the cycle, financial companies can make better decisions about which network service—and which intermediary, market, or counterparty—to select for routing trade orders. Likewise, this knowledge allows more streamlined access to updated market data (stock quotes, economic news, etc.), which is an important basis for initiating, withdrawing from, or pursuing market opportunities.
The components of the solution are:
• AON hardware in three form factors:
– AON Network Module for Cisco 2600/2800/3700/3800 routers.
– AON Blade for the Cisco Catalyst 6500 series.
– AON 8340 Appliance.
• Trading Metrics M&A 2.0 software, which provides the monitoring and alerting application, displays latency graphs on a dashboard, and issues alerts when slowdowns occur (tradingmetrics/TM_brochure. pdf).
Figure 10 AON-Based FIX Latency Monitoring.
Cisco IP SLA.
Cisco IP SLA is an embedded network management tool in Cisco IOS which allows routers and switches to generate synthetic traffic streams which can be measured for latency, jitter, packet loss, and other criteria (cisco/go/ipsla).
Two key concepts are the source of the generated traffic and the target. Both of these run an IP SLA "responder," which has the responsibility to timestamp the control traffic before it is sourced and returned by the target (for a round trip measurement). Various traffic types can be sourced within IP SLA and they are aimed at different metrics and target different services and applications. The UDP jitter operation is used to measure one-way and round-trip delay and report variations. As the traffic is time stamped on both sending and target devices using the responder capability, the round trip delay is characterized as the delta between the two timestamps.
A new feature was introduced in IOS 12.3(14)T, IP SLA Sub Millisecond Reporting, which allows for timestamps to be displayed with a resolution in microseconds, thus providing a level of granularity not previously available. This new feature has now made IP SLA relevant to campus networks where network latency is typically in the range of 300-800 microseconds and the ability to detect trends and spikes (brief trends) based on microsecond granularity counters is a requirement for customers engaged in time-sensitive electronic trading environments.
As a result, IP SLA is now being considered by significant numbers of financial organizations as they are all faced with requirements to:
• Report baseline latency to their users.
• Trend baseline latency over time.
• Respond quickly to traffic bursts that cause changes in the reported latency.
Sub-millisecond reporting is necessary for these customers, since many campus and backbones are currently delivering under a second of latency across several switch hops. Electronic trading environments have generally worked to eliminate or minimize all areas of device and network latency to deliver rapid order fulfillment to the business. Reporting that network response times are "just under one millisecond" is no longer sufficient; the granularity of latency measurements reported across a network segment or backbone need to be closer to 300-800 micro-seconds with a degree of resolution of 100 ì seconds.
IP SLA recently added support for IP multicast test streams, which can measure market data latency.
A typical network topology is shown in Figure 11 with the IP SLA shadow routers, sources, and responders.
Figure 11 IP SLA Deployment.
Serviços de computação.
Computing services cover a wide range of technologies with the goal of eliminating memory and CPU bottlenecks created by the processing of network packets. Trading applications consume high volumes of market data and the servers have to dedicate resources to processing network traffic instead of application processing.
• Transport processing—At high speeds, network packet processing can consume a significant amount of server CPU cycles and memory. An established rule of thumb states that 1Gbps of network bandwidth requires 1 GHz of processor capacity (source Intel white paper on I/O acceleration intel/technology/ioacceleration/306517.pdf).
• Intermediate buffer copying—In a conventional network stack implementation, data needs to be copied by the CPU between network buffers and application buffers. This overhead is worsened by the fact that memory speeds have not kept up with increases in CPU speeds. For example, processors like the Intel Xeon are approaching 4 GHz, while RAM chips hover around 400MHz (for DDR 3200 memory) (source Intel intel/technology/ioacceleration/306517.pdf).
• Context switching—Every time an individual packet needs to be processed, the CPU performs a context switch from application context to network traffic context. This overhead could be reduced if the switch would occur only when the whole application buffer is complete.
Figure 12 Sources of Overhead in Data Center Servers.
• TCP Offload Engine (TOE)—Offloads transport processor cycles to the NIC. Moves TCP/IP protocol stack buffer copies from system memory to NIC memory.
• Remote Direct Memory Access (RDMA)—Enables a network adapter to transfer data directly from application to application without involving the operating system. Eliminates intermediate and application buffer copies (memory bandwidth consumption).
• Kernel bypass — Direct user-level access to hardware. Dramatically reduces application context switches.
Figure 13 RDMA and Kernel Bypass.
InfiniBand is a point-to-point (switched fabric) bidirectional serial communication link which implements RDMA, among other features. Cisco offers an InfiniBand switch, the Server Fabric Switch (SFS): cisco/application/pdf/en/us/guest/netsol/ns500/c643/cdccont_0900aecd804c35cb. pdf.
Figure 14 Typical SFS Deployment.
Trading applications benefit from the reduction in latency and latency variability, as proved by a test performed with the Cisco SFS and Wombat Feed Handlers by Stac Research:
Application Virtualization Service.
De-coupling the application from the underlying OS and server hardware enables them to run as network services. One application can be run in parallel on multiple servers, or multiple applications can be run on the same server, as the best resource allocation dictates. This decoupling enables better load balancing and disaster recovery for business continuance strategies. The process of re-allocating computing resources to an application is dynamic. Using an application virtualization system like Data Synapse's GridServer, applications can migrate, using pre-configured policies, to under-utilized servers in a supply-matches-demand process (networkworld/supp/2005/ndc1/022105virtual. html? page=2).
There are many business advantages for financial firms who adopt application virtualization:
• Faster time to market for new products and services.
• Faster integration of firms following merger and acquisition activity.
• Increased application availability.
• Better workload distribution, which creates more "head room" for processing spikes in trading volume.
• Operational efficiency and control.
• Reduction in IT complexity.
Currently, application virtualization is not used in the trading front-office. One use-case is risk modeling, like Monte Carlo simulations. As the technology evolves, it is conceivable that some the trading platforms will adopt it.
Data Virtualization Service.
To effectively share resources across distributed enterprise applications, firms must be able to leverage data across multiple sources in real-time while ensuring data integrity. With solutions from data virtualization software vendors such as Gemstone or Tangosol (now Oracle), financial firms can access heterogeneous sources of data as a single system image that enables connectivity between business processes and unrestrained application access to distributed caching. The net result is that all users have instant access to these data resources across a distributed network (gridtoday/03/0210/101061.html).
This is called a data grid and is the first step in the process of creating what Gartner calls Extreme Transaction Processing (XTP) (gartner/DisplayDocument? ref=g_search&id=500947). Technologies such as data and applications virtualization enable financial firms to perform real-time complex analytics, event-driven applications, and dynamic resource allocation.
One example of data virtualization in action is a global order book application. An order book is the repository of active orders that is published by the exchange or other market makers. A global order book aggregates orders from around the world from markets that operate independently. The biggest challenge for the application is scalability over WAN connectivity because it has to maintain state. Today's data grids are localized in data centers connected by Metro Area Networks (MAN). This is mainly because the applications themselves have limits—they have been developed without the WAN in mind.
Figure 15 GemStone GemFire Distributed Caching.
Before data virtualization, applications used database clustering for failover and scalability. This solution is limited by the performance of the underlying database. Failover is slower because the data is committed to disc. With data grids, the data which is part of the active state is cached in memory, which reduces drastically the failover time. Scaling the data grid means just adding more distributed resources, providing a more deterministic performance compared to a database cluster.
Multicast Service.
Market data delivery is a perfect example of an application that needs to deliver the same data stream to hundreds and potentially thousands of end users. Market data services have been implemented with TCP or UDP broadcast as the network layer, but those implementations have limited scalability. Using TCP requires a separate socket and sliding window on the server for each recipient. UDP broadcast requires a separate copy of the stream for each destination subnet. Both of these methods exhaust the resources of the servers and the network. The server side must transmit and service each of the streams individually, which requires larger and larger server farms. On the network side, the required bandwidth for the application increases in a linear fashion. For example, to send a 1 Mbps stream to 1000recipients using TCP requires 1 Gbps of bandwidth.
IP multicast is the only way to scale market data delivery. To deliver a 1 Mbps stream to 1000 recipients, IP multicast would require 1 Mbps. The stream can be delivered by as few as two servers—one primary and one backup for redundancy.
There are two main phases of market data delivery to the end user. In the first phase, the data stream must be brought from the exchange into the brokerage's network. Typically the feeds are terminated in a data center on the customer premise. The feeds are then processed by a feed handler, which may normalize the data stream into a common format and then republish into the application messaging servers in the data center.
The second phase involves injecting the data stream into the application messaging bus which feeds the core infrastructure of the trading applications. The large brokerage houses have thousands of applications that use the market data streams for various purposes, such as live trades, long term trending, arbitrage, etc. Many of these applications listen to the feeds and then republish their own analytical and derivative information. For example, a brokerage may compare the prices of CSCO to the option prices of CSCO on another exchange and then publish ratings which a different application may monitor to determine how much they are out of synchronization.
Figure 16 Market Data Distribution Players.
The delivery of these data streams is typically over a reliable multicast transport protocol, traditionally Tibco Rendezvous. Tibco RV operates in a publish and subscribe environment. Each financial instrument is given a subject name, such as CSCO. last. Each application server can request the individual instruments of interest by their subject name and receive just a that subset of the information. This is called subject-based forwarding or filtering. Subject-based filtering is patented by Tibco.
A distinction should be made between the first and second phases of market data delivery. The delivery of market data from the exchange to the brokerage is mostly a one-to-many application. The only exception to the unidirectional nature of market data may be retransmission requests, which are usually sent using unicast. The trading applications, however, are definitely many-to-many applications and may interact with the exchanges to place orders.
Figure 17 Market Data Architecture.
Design Issues.
Number of Groups/Channels to Use.
Many application developers consider using thousand of multicast groups to give them the ability to divide up products or instruments into small buckets. Normally these applications send many small messages as part of their information bus. Usually several messages are sent in each packet that are received by many users. Sending fewer messages in each packet increases the overhead necessary for each message.
In the extreme case, sending only one message in each packet quickly reaches the point of diminishing returns—there is more overhead sent than actual data. Application developers must find a reasonable compromise between the number of groups and breaking up their products into logical buckets.
Consider, for example, the Nasdaq Quotation Dissemination Service (NQDS). The instruments are broken up alphabetically:
Another example is the Nasdaq Totalview service, broken up this way:
This approach allows for straight forward network/application management, but does not necessarily allow for optimized bandwidth utilization for most users. A user of NQDS that is interested in technology stocks, and would like to subscribe to just CSCO and INTL, would have to pull down all the data for the first two groups of NQDS. Understanding the way users pull down the data and then organize it into appropriate logical groups optimizes the bandwidth for each user.
In many market data applications, optimizing the data organization would be of limited value. Typically customers bring in all data into a few machines and filter the instruments. Using more groups is just more overhead for the stack and does not help the customers conserve bandwidth. Another approach might be to keep the groups down to a minimum level and use UDP port numbers to further differentiate if necessary. The other extreme would be to use just one multicast group for the entire application and then have the end user filter the data. In some situations this may be sufficient.
Intermittent Sources.
A common issue with market data applications are servers that send data to a multicast group and then go silent for more than 3.5 minutes. These intermittent sources may cause trashing of state on the network and can introduce packet loss during the window of time when soft state and then hardware shorts are being created.
PIM-Bidir or PIM-SSM.
The first and best solution for intermittent sources is to use PIM-Bidir for many-to-many applications and PIM-SSM for one-to-many applications.
Both of these optimizations of the PIM protocol do not have any data-driven events in creating forwarding state. That means that as long as the receivers are subscribed to the streams, the network has the forwarding state created in the hardware switching path.
Intermittent sources are not an issue with PIM-Bidir and PIM-SSM.
Null Packets.
In PIM-SM environments a common method to make sure forwarding state is created is to send a burst of null packets to the multicast group before the actual data stream. The application must efficiently ignore these null data packets to ensure it does not affect performance. The sources must only send the burst of packets if they have been silent for more than 3 minutes. A good practice is to send the burst if the source is silent for more than a minute. Many financials send out an initial burst of traffic in the morning and then all well-behaved sources do not have problems.
Periodic Keepalives or Heartbeats.
An alternative approach for PIM-SM environments is for sources to send periodic heartbeat messages to the multicast groups. This is a similar approach to the null packets, but the packets can be sent on a regular timer so that the forwarding state never expires.
S, G Expiry Timer.
Finally, Cisco has made a modification to the operation of the S, G expiry timer in IOS. There is now a CLI knob to allow the state for a S, G to stay alive for hours without any traffic being sent. The (S, G) expiry timer is configurable. This approach should be considered a workaround until PIM-Bidir or PIM-SSM is deployed or the application is fixed.
RTCP Feedback.
A common issue with real time voice and video applications that use RTP is the use of RTCP feedback traffic. Unnecessary use of the feedback option can create excessive multicast state in the network. If the RTCP traffic is not required by the application it should be avoided.
Fast Producers and Slow Consumers.
Today many servers providing market data are attached at Gigabit speeds, while the receivers are attached at different speeds, usually 100Mbps. This creates the potential for receivers to drop packets and request re-transmissions, which creates more traffic that the slowest consumers cannot handle, continuing the vicious circle.
The solution needs to be some type of access control in the application that limits the amount of data that one host can request. QoS and other network functions can mitigate the problem, but ultimately the subscriptions need to be managed in the application.
Tibco Heartbeats.
TibcoRV has had the ability to use IP multicast for the heartbeat between the TICs for many years. However, there are some brokerage houses that are still using very old versions of TibcoRV that use UDP broadcast support for the resiliency. This limitation is often cited as a reason to maintain a Layer 2 infrastructure between TICs located in different data centers. These older versions of TibcoRV should be phased out in favor of the IP multicast supported versions.
Multicast Forwarding Options.
PIM Sparse Mode.
The standard IP multicast forwarding protocol used today for market data delivery is PIM Sparse Mode. It is supported on all Cisco routers and switches and is well understood. PIM-SM can be used in all the network components from the exchange, FSP, and brokerage.
There are, however, some long-standing issues and unnecessary complexity associated with a PIM-SM deployment that could be avoided by using PIM-Bidir and PIM-SSM. These are covered in the next sections.
The main components of the PIM-SM implementation are:
• PIM Sparse Mode v2.
• Shared Tree (spt-threshold infinity)
A design option in the brokerage or in the exchange.
Details of Anycast RP can be found in:
The classic high availability design for Tibco in the brokerage network is documented in:
Bidirectional PIM.
PIM-Bidir is an optimization of PIM Sparse Mode for many-to-many applications. It has several key advantages over a PIM-SM deployment:
• Better support for intermittent sources.
• No data-triggered events.
One of the weaknesses of PIM-SM is that the network continually needs to react to active data flows. This can cause non-deterministic behavior that may be hard to troubleshoot. PIM-Bidir has the following major protocol differences over PIM-SM:
– No source registration.
Source traffic is automatically sent to the RP and then down to the interested receivers. There is no unicast encapsulation, PIM joins from the RP to the first hop router and then registration stop messages.
All PIM-Bidir traffic is forwarded on a *,G forwarding entry. The router does not have to monitor the traffic flow on a *,G and then send joins when the traffic passes a threshold.
– No need for an actual RP.
The RP does not have an actual protocol function in PIM-Bidir. The RP acts as a routing vector in which all the traffic converges. The RP can be configured as an address that is not assigned to any particular device. This is called a Phantom RP.
– No need for MSDP.
MSDP provides source information between RPs in a PIM-SM network. PIM-Bidir does not use the active source information for any forwarding decisions and therefore MSDP is not required.
Bidirectional PIM is ideally suited for the brokerage network in the data center of the exchange. In this environment there are many sources sending to a relatively few set of groups in a many-to-many traffic pattern.
The key components of the PIM-Bidir implementation are:
Further details about Phantom RP and basic PIM-Bidir design are documented in:
Source Specific Multicast.
PIM-SSM is an optimization of PIM Sparse Mode for one-to-many applications. In certain environments it can offer several distinct advantages over PIM-SM. Like PIM-Bidir, PIM-SSM does not rely on any data-triggered events. Furthermore, PIM-SSM does not require an RP at all—there is no such concept in PIM-SSM. The forwarding information in the network is completely controlled by the interest of the receivers.
Source Specific Multicast is ideally suited for market data delivery in the financial service provider. The FSP can receive the feeds from the exchanges and then route them to the end of their network.
Many FSPs are also implementing MPLS and Multicast VPNs in their core. PIM-SSM is the preferred method for transporting traffic in VRFs.
When PIM-SSM is deployed all the way to the end user, the receiver indicates his interest in a particular S, G with IGMPv3. Even though IGMPv3 was defined by RFC 2236 back in October, 2002, it still has not been implemented by all edge devices. This creates a challenge for deploying an end-to-end PIM-SSM service. A transitional solution has been developed by Cisco to enable an edge device that supports IGMPv2 to participate in an PIM-SSM service. This feature is called SSM Mapping and is documented in:
Storage Services.
The service provides storage capabilities into the market data and trading environments. Trading applications access backend storage to connect to different databases and other repositories consisting of portfolios, trade settlements, compliance data, management applications, Enterprise Service Bus (ESB), and other critical applications where reliability and security is critical to the success of the business. The main requirements for the service are:
Storage virtualization is an enabling technology that simplifies management of complex infrastructures, enables non-disruptive operations, and facilitates critical elements of a proactive information lifecycle management (ILM) strategy. EMC Invista running on the Cisco MDS 9000 enables heterogeneous storage pooling and dynamic storage provisioning, allowing allocation of any storage to any application. High availability is increased with seamless data migration. Appropriate class of storage is allocated to point-in-time copies (clones). Storage virtualization is also leveraged through the use of Virtual Storage Area Networks (VSANs), which enable the consolidation of multiple isolated SANs onto a single physical SAN infrastructure, while still partitioning them as completely separate logical entities. VSANs provide all the security and fabric services of traditional SANs, yet give organizations the flexibility to easily move resources from one VSAN to another. This results in increased disk and network utilization while driving down the cost of management. Integrated Inter VSAN Routing (IVR) enables sharing of common resources across VSANs.
Figure 18 High Performance Computing Storage.
Replication of data to a secondary and tertiary data center is crucial for business continuance. Replication offsite over Fiber Channel over IP (FCIP) coupled with write acceleration and tape acceleration provides improved performance over long distance. Continuous Data Replication (CDP) is another mechanism which is gaining popularity in the industry. It refers to backup of computer data by automatically saving a copy of every change made to that data, essentially capturing every version of the data that the user saves. It allows the user or administrator to restore data to any point in time. Solutions from EMC and Incipient utilize the SANTap protocol on the Storage Services Module (SSM) in the MDS platform to provide CDP functionality. The SSM uses the SANTap service to intercept and redirect a copy of a write between a given initiator and target. The appliance does not reside in the data path—it is completely passive. The CDP solutions typically leverage a history journal that tracks all changes and bookmarks that identify application-specific events. This ensures that data at any point in time is fully self-consistent and is recoverable instantly in the event of a site failure.
Backup procedure reliability and performance are extremely important when storing critical financial data to a SAN. The use of expensive media servers to move data from disk to tape devices can be cumbersome. Network-accelerated serverless backup (NASB) helps you back up increased amounts of data in shorter backup time frames by shifting the data movement from multiple backup servers to Cisco MDS 9000 Series multilayer switches. This technology decreases impact on application servers because the MDS offloads the application and backup servers. It also reduces the number of backup and media servers required, thus reducing CAPEX and OPEX. The flexibility of the backup environment increases because storage and tape drives can reside anywhere on the SAN.
Trading Resilience and Mobility.
The main requirements for this service are to provide the virtual trader:
• Fully scalable and redundant campus trading environment.
• Resilient server load balancing and high availability in analytic server farms.
• Global site load balancing that provide the capability to continue participating in the market venues of closest proximity.
A highly-available campus environment is capable of sustaining multiple failures (i. e., links, switches, modules, etc.), which provides non-disruptive access to trading systems for traders and market data feeds. Fine-tuned routing protocol timers, in conjunction with mechanisms such as NSF/SSO, provide subsecond recovery from any failure.
The high-speed interconnect between data centers can be DWDM/dark fiber, which provides business continuance in case of a site failure. Each site is 100km-200km apart, allowing synchronous data replication. Usually the distance for synchronous data replication is 100km, but with Read/Write Acceleration it can stretch to 200km. A tertiary data center can be greater than 200km away, which would replicate data in an asynchronous fashion.
Figure 19 Trading Resilience.
A robust server load balancing solution is required for order routing, algorithmic trading, risk analysis, and other services to offer continuous access to clients regardless of a server failure. Multiple servers encompass a "farm" and these hosts can added/removed without disruption since they reside behind a virtual IP (VIP) address which is announced in the network.
A global site load balancing solution provides remote traders the resiliency to access trading environments which are closer to their location. This minimizes latency for execution times since requests are always routed to the nearest venue.
Figure 20 Virtualization of Trading Environment.
A trading environment can be virtualized to provide segmentation and resiliency in complex architectures. Figure 20 illustrates a high-level topology depicting multiple market data feeds entering the environment, whereby each vendor is assigned its own Virtual Routing and Forwarding (VRF) instance. The market data is transferred to a high-speed InfiniBand low-latency compute fabric where feed handlers, order routing systems, and algorithmic trading systems reside. All storage is accessed via a SAN and is also virtualized with VSANs, allowing further security and segmentation. The normalized data from the compute fabric is transferred to the campus trading environment where the trading desks reside.
Wide Area Application Services.
This service provides application acceleration and optimization capabilities for traders who are located outside of the core trading floor facility/data center and working from a remote office. To consolidate servers and increase security in remote offices, file servers, NAS filers, storage arrays, and tape drives are moved to a corporate data center to increase security and regulatory compliance and facilitate centralized storage and archival management. As the traditional trading floor is becoming more virtual, wide area application services technology is being utilized to provide a "LAN-like" experience to remote traders when they access resources at the corporate site. Traders often utilize Microsoft Office applications, especially Excel in addition to Sharepoint and Exchange. Excel is used heavily for modeling and permutations where sometime only small portions of the file are changed. CIFS protocol is notoriously known to be "chatty," where several message normally traverse the WAN for a simple file operation and it is addressed by Wide Area Application Service (WAAS) technology. Bloomberg and Reuters applications are also very popular financial tools which access a centralized SAN or NAS filer to retrieve critical data which is fused together before represented to a trader's screen.
Figure 21 Wide Area Optimization.
A pair of Wide Area Application Engines (WAEs) that reside in the remote office and the data center provide local object caching to increase application performance. The remote office WAEs can be a module in the ISR router or a stand-alone appliance. The data center WAE devices are load balanced behind an Application Control Engine module installed in a pair of Catalyst 6500 series switches at the aggregation layer. The WAE appliance farm is represented by a virtual IP address. The local router in each site utilizes Web Cache Communication Protocol version 2 (WCCP v2) to redirect traffic to the WAE that intercepts the traffic and determines if there is a cache hit or miss. The content is served locally from the engine if it resides in cache; otherwise the request is sent across the WAN the initial time to retrieve the object. This methodology optimizes the trader experience by removing application latency and shielding the individual from any congestion in the WAN.
WAAS uses the following technologies to provide application acceleration:
• Data Redundancy Elimination (DRE) is an advanced form of network compression which allows the WAE to maintain a history of previously-seen TCP message traffic for the purposes of reducing redundancy found in network traffic. This combined with the Lempel-Ziv (LZ) compression algorithm reduces the number of redundant packets that traverse the WAN, which improves application transaction performance and conserves bandwidth.
• Transport Flow Optimization (TFO) employs a robust TCP proxy to safely optimize TCP at the WAE device by applying TCP-compliant optimizations to shield the clients and servers from poor TCP behavior because of WAN conditions. By running a TCP proxy between the devices and leveraging an optimized TCP stack between the devices, many of the problems that occur in the WAN are completely blocked from propagating back to trader desktops. The traders experience LAN-like TCP response times and behavior because the WAE is terminating TCP locally. TFO improves reliability and throughput through increases in TCP window scaling and sizing enhancements in addition to superior congestion management.
Thin Client Service.
This service provides a "thin" advanced trading desktop which delivers significant advantages to demanding trading floor environments requiring continuous growth in compute power. As financial institutions race to provide the best trade executions for their clients, traders are utilizing several simultaneous critical applications that facilitate complex transactions. It is not uncommon to find three or more workstations and monitors at a trader's desk which provide visibility into market liquidity, trading venues, news, analysis of complex portfolio simulations, and other financial tools. In addition, market dynamics continue to evolve with Direct Market Access (DMA), ECNs, alternative trading volumes, and upcoming regulation changes with Regulation National Market System (RegNMS) in the US and Markets in Financial Instruments Directive (MiFID) in Europe. At the same time, business seeks greater control, improved ROI, and additional flexibility, which creates greater demands on trading floor infrastructures.
Traders no longer require multiple workstations at their desk. Thin clients consist of keyboard, mouse, and multi-displays which provide a total trader desktop solution without compromising security. Hewlett Packard, Citrix, Desktone, Wyse, and other vendors provide thin client solutions to capitalize on the virtual desktop paradigm. Thin clients de-couple the user-facing hardware from the processing hardware, thus enabling IT to grow the processing power without changing anything on the end user side. The workstation computing power is stored in the data center on blade workstations, which provide greater scalability, increased data security, improved business continuance across multiple sites, and reduction in OPEX by removing the need to manage individual workstations on the trading floor. One blade workstation can be dedicated to a trader or shared among multiple traders depending on the requirements for computer power.
The "thin client" solution is optimized to work in a campus LAN environment, but can also extend the benefits to traders in remote locations. Latency is always a concern when there is a WAN interconnecting the blade workstation and thin client devices. The network connection needs to be sized accordingly so traffic is not dropped if saturation points exist in the WAN topology. WAN Quality of Service (QoS) should prioritize sensitive traffic. There are some guidelines which should be followed to allow for an optimized user experience. A typical highly-interactive desktop experience requires a client-to-blade round trip latency of <20ms for a 2Kb packet size. There may be a slight lag in display if network latency is between 20ms to 40ms. A typical trader desk with a four multi-display terminal requires 2-3Mbps bandwidth consumption with seamless communication with blade workstation(s) in the data center. Streaming video (800x600 at 24fps/full color) requires 9 Mbps bandwidth usage.
Figure 22 Thin Client Architecture.
Management of a large thin client environment is simplified since a centralized IT staff manages all of the blade workstations dispersed across multiple data centers. A trader is redirected to the most available environment in the enterprise in the event of a particular site failure. High availability is a key concern in critical financial environments and the Blade Workstation design provides rapid provisioning of another blade workstation in the data center. This resiliency provides greater uptime, increases in productivity, and OpEx reduction.

Comments